DOCUNENT RESUME |
ED 1384 229 . ’ IR 004 441

AUTHOR nievergelt, Je.; And Others
TITLE ACSES: The Automated Computer Science Education
System at the University of Illinois.
INSTITUTION I1linois Univ., Urbana. Dept. of Computer Science.
SPONS AGENCY National Science Foundation, Washington, -D.C.
" REPORT RO UIUCDCS-R-76-810
PUB. DATE Aug 76 o
GRANT BC41511; BPP-74-21590
HOTE 171p.
EDRS PRICE ur-so.aa BC-$8 69 Plns Postage. ,
DESCRIPTORS ‘Artificial Intelligence; College Cnrricnln-.

*Computer Assisted Instruction; *Computer Science
‘Bducation; Information Retrieval; #*Instructional
Innovation; Inetructional Systeas; On Line Systenms;
o Programing Langunages ‘
IDENTIPIERS PLATO IV

lBSTRlCT)

The : Automated Computer Science :Bducational Systel
_(ACSES) has been developed at the :University of Illinois for the
purpose of ptoviiing*iaproved education for the :large number. of
students taking introductory cosmputer science :courses. Theé major
components of this system are: a library of. instructional lessons, an:
interactive programing system with excellent error diagnostics, an

" information retrieval system, an automated exam and guiz system, and
several lessons which judge 'student -programs. This report: hriefly
describes each of these components, as-well as some ideas on...:
programing language design resulting from this expe:ignce, and
presents an evaluation of the: use of the:system over the past three
years. (Author) .

) _Documents acqnired hy ‘BRIC include: lany inforlalmnnpnhlished L %®
materials not available from other sources. ERIC hakes: every. effort *
to obtain the best copy available. Nevertheless, ‘items of marginal =
reproducibility are-often encountered and this: affects the .quality *
‘of the -microfiche ‘and hardcopy reprodnctions ERIC makes available *
via the ERIC Document Reproduction Service (EDRS). EDRS is not *
‘responsible for the: gnality of -the ‘original document.: ‘Reproductions *
‘gupplied by EDRS are: the best that can be :made .from ‘the origimal. *
ttttttﬁtttttat#tttttt*atttttttttttatttt*tttttttttttttt#tttttttttt*ttttt--L

\) L%

T RN E X R R

Aruitoxt provided by Eic:

-This work was supported in pa.rt by the Na.tiona.l Science Foundation
under grants EChlSll a.nd EPP-7h-21590. 4

© ACSES: The Automated Computer Science Educatic™ -
System at the University of Illj.nqis B U.S. DEPARTMENT OF HEALTHN,
o . . - WOUCATION & WELEARE i
- . NATIONAL INSTITUTE OF .
. b BOUCATION i
: by s oocumen s Bek REPRC, 1
- : *1 THE PERSON OR ORGANIZATION ORIGIN- }v
- . : T ATING 1T, ‘POINTS OF VIEW OR OPINIONS B
p . x STATED DO NOT NECESSARILV‘ :ﬁ:ﬂoi- f{,
Authors: e etee
J. Nievergelt e e
H. G. Friedmen, Jr. Rt
- W. J. Hamsen . - T e
R.. G, Montenelli, Jr. Lo
. R I‘;'}Anderson -':»!J) : N
o A. M. Davis - U1 MGHIED MATEAL iAS BEEN cRANTES B
D. R. Kland - S _ T
- D. W. Embl 4 evergelt o
W. D.: Gi]_l:zt ’1 mogzliaﬁgz"g:%«m?ﬂons OPERATING j
T S WITH THE NATIONAL IN- ;
P, Matetd . oo SR
g' ;“. g‘iadj::%s o k . gw::g PERMISSION OF THE COPYRIGHT
. .R. Steinberg :
" M. H. Tindall T
L. R. Whitlock
August 1976

Acknowledgements
We_ere indebted to a host of students who have'rorked
on portions of ACSES as term projects or Masterfs theses, as well
as those ﬁhewp;rtieipetedﬁin the initial use of the system_}or :
_instruction. - Co S o “ ﬁ Fj
_ The assistance and advice of the staff’of the PLATO IV
project have been appreciated, as well es the support provided by
the National Science Iaundation._ » _
Finally, thanks are due to Betsy Colgan for an excellent

Jcb of typing (end sometimes retyping) this report.

1.

2.

8.

9.

Appendix: Computer Sclence LessONSecssccsesccssccccscscnsss

TABLE OF CONTENTS

Tnt.roduction (J. Nievergelt)‘.......‘..‘.‘..'.‘....‘.......
The library of lessons (H. G. Friedman; Jre)ecesocannans

Computer assisted programming system -(CAPS) (T. R.
wilcox’ A. M. mvis’ M. H. Tindall).....................

The GUIDE information and advising system (D. R. Elend,
J. L. madels)..

| Intera.ctive test construction and a.dministration :i.n. the

generative exam system (L. R. Whitlock, R. I.

Mderson).C...............C..............’......;..’.»..c..

. Automatic Judging of student programs (R. L.
mnielson’ P. Mateti’ w. D. Gillett).......‘............ .

Experimental and formal language design applied to
control constructs for interactive computing (D. W.

mbley)........l.c......................................

Use of ACSES in instruction (R. G. Montanelll, Jr.,

E. R. Steinberg)........C..........Co.............C.....

ACSES bibliograpw......................................

Page

10

45

63

73

103

11

14

T

N3

oS

1. Tntroduction (J. Nievergelt)

From 1972 to 76 fhe Department of Computer Science ha.‘s
been heavily involved in a project to develop an antomated instructional
system for teaching computer programming. After four years of
implementation, lwith a.n effort in excess of 25. man-years which produced
approximetely aAmillion words of code, our system ACSES (Automated
Computer Science Education System) is now in routine large-scale
use, assuming sbout 50% of the teaehing ioa.d in various inﬁroduetory

computer science courses, with a tota.l enrollment of over 1500 students

8-

.per semester.

| ACSES runs on the FIATO IV system developed by the Computer-
based Educe.tion Research Laboratory at the Imivereity of Illinois.
The approximately 1000 terminals acrossv the country attached to the
Ilinois PIATO system have permitt‘ed a sneiler scale use of ACSES in
same other schools. it is to be expected that the use of ACSES will
continue to increa.se in our own courses a.s‘ well as elsewhere.- While
the initial development of ACSES is now complete, expanded use requiree
a continuing effort to maintain t_he system: ade.pting it to .ehe.nges and
new features of the PIATO s&stem, adding new instructiona.l‘ma.teria.l, and,
most important, improving existing ma:beria.l on the ba.sis of experience
in actual instructional use.

. The purpose of this report is to document the ApSES project:

to serve as a case study in the design,-implementation,i:and use of a
~major effort in computer-aided i-struction. This introducfion is a
- concise description of the ACSES project: .- it presents. the motivat'lon

for starting the project; the desimm criteria., the components of. the

resulting system, the experience gained during the implementa.tion and

use of ACSES. The remainder 61‘ the report describes various aspects of

the project in more detail.

Why ACSES? A

Computers are playing an increasingly pe.rvasive role in our
society, and this fact leads directly to a rapidly increasing demand
for basic computer science education. This demand arises from two .
sources.

First, the demand for computer professionals continues to
grow. The most widely accepted projections show a doubling of the tc.>ta.l
demand for systems analysts, programmers, computér operators and
associated technicians during the next five years.
.- Sec_ondly, it seems reasonable to expet':t that mpst people will
be required to interact with computers in their daily work within a |
decade or two. Even people not directly concerned with computers shouid
~ have some understanding of them because an enlightened public will be
essential if we are to make intelligent decisions concerning the future
role of computers in our society. Currently many citizens view conipui'.ers
with indifference, while others fear them as the ultimate threat to their
privacy, security, and dignity. Such attitudes will cleerly not suffice.
Hence, it is important ‘that every educated person have'some understanding
of the principles underl&ing computers and their implications for society,
as well as some skill in their use. At the very least, everyone sh'oula
have the opportunity to acquire this knowledgé' in a convenient way

Recognizing the importance of "computer 1itéracy; " the \-
President's Science Advisory Committee recommended in their 1967 report
that 75% of a.ll college students should have a meaningful exposure to

| 6
-2-

-

-

computeré; Even though this percentage has not yét been attained, the
demand for instfuction in basic computer science at our universities,
colleges, junior‘colleges; and private electronic data processing
schools ié enormous. - These institutions have relied on the traditional
instructiqnal-app?oach of lecture-discussion-ldboratory. This approach
suffers from several defects? particulgrly when it'involves.lérge'nﬁMbers
of students. It is not particularly suited to the subject and is,
therefore; the cause of student dissatisfaction. Leérning to progrem
requires active participation aﬁd intehée effort on the parﬁ of.#he
student--two things that are not ehcouraged b& the leéturevtyﬁe.ofk'
instruction. An indiviagal~tutor'for evé;;istudént wouladbe_iﬂea;‘for
learning a skill such as programming; but such a modé of ipst;uction.is
obviously economically not feasible when one aims at a mass-éducation
program. |

In addition, the traditional lecture-based approach camonly
reach a limited audience. In particular, it excludes all ﬁeop;e_whose
professional duties prevent them_from attending school for any lepgth
of time. It is to Bé expectedrthat £here wili be a larg;-déﬁéﬁd-for‘)
basic computer science courses in connection with continﬁing'aéﬁlt -3?
educafion programs. The situation where somebody suddenly finds.thatb:.
he should knoﬁ'sdmething about Egmputers in order to remaig:effective
on his job, will become an increasingl&-familiar event. B

A1l of these long-range considerqtibps,_in anitign_tg our
own experience in teaching introductop& computer science at fhe |

University of Illinois to about 2000 students of widely different N

.

L
backgrounds every semester,-léd'to the initiation of a large-scale
project to automate introductory computer science.courses,vthe results
of wvhich are described in this report. i
The PLATO IV system be.u;g developed by the Compiter-based

Education Research Laboratory at the University of INlinois gave ﬁs.
& unique opportunity to develop an automated course consisting of
CAI-lessons sbout computers and of supporting software, and to try this g
system out on a large audience of diverse educational background. ,The‘”
PLATO IV system, while centered at the University;of Illinois,:serves, .
nearly 1000 terminals located at schools and colleges with very?different
typeg;of student populations, and with wide geographic dispersion. "

" Potentially, computer-assisted instruction (CAI) has- many -
. .advantages: It can provide truly individualized instruction by allowing
students to study sequences of lessons tailored to their‘needs-and at
their own pace; given a suitable terminal network, it-canlreach:afwide_
audience and, in the forseeable future, do so at low cost. Because of
its potential cost effectlveness, CAI may become the cheapest way for
schools and colleges who do not as yet offer computer science courses
to institute programs in computer studies. However, these potential
adwantages of CAI will be reslized only if much more research and & large
scale development effort is carried out. We view our project ag’ e
contribution towurds the goal of demonstrating the feasibility of a
CAI-based approach topthe-problem of mass-education in basic computer.

science.

" Design criteria, and the resulting structure of ACSES
ACSES, our automated computer science education system
developed on PLATO v, is"designed to be ussble in two;modes, according
tu the two purposes it is intended to serve: ‘supplementary instruction

abnour own university, and main-line instruction at remote sites.

a) The partially automated modewfor'supplementary,instruction

In our Computer Science Department an instructor is still
responsible icr a course, and CAI lessons are used in an adJunct mode.

He may discuss u problem in classroom, and then refer the students to an

eppropriaie lesson that gives more detail, exammles, o:'allows the stulent -

to practice or solve problems on the compuﬁer. In'the case nf: our computer
science.lessons, practicing and problea solving'usually means that the
student must write and execute & small program. He is eble to do.so at
the same terminal, and switch easily from lesson taking to programming,‘

-

and back. .
Thus, in order to operate a partially automated introductory
computer science course, one needs primarily:
-- a library of lessons, cover1ng several programming languages, computing
techniques, and aprlication areas |
-- 8 completely selfecontained interactive programming»syStem for the
preperation, execution:and debugging of programsrwrittenihy*students
in any of the languages covered by the lessons.
-="8n ;exam system, to automatically generate problems according to
an instructor's specification, to grade the student's’ solution,
and administer the exam (data “collection” and- security aspects)

b) the fully automated mode for main-line instruction'

We expect that the demand for basic computer science courses

on the part of high schools, junior colleges, and continuing adult

~

: education wil,‘l. grow rapid]y in the near future ‘In these settings ,. '
therc may not be an instructor available who can guide the student'
_course of stucw and fill any gaps that might bs p;esent in the 1esson
ma.terial. Hence in this setting the system has to be usable »in 8
ful]y automated mode , and ACSES makes this possible primarily
Sy providihs
-- 8. conversa+ional advice-giving and ini’ormation retrieval system
to guide the student through the 1ibrary of lessons R based on his
goals and past perform?nceo . |
Ce=a communication system that allows 8 student to contact a‘ human
tutor for help and advice, from any. termina.l connected to the
PLATO system.— -

We conside» our project to be a ma.jor research effort to.

¢ 4,_..,,"‘7?7‘_ -

— investigate the extent to which a large introductory course ‘can be SR

tomated. The ob;]ective has not been to take one of our existing

-CS ccurses and put it on PLATO as- it is. Rather, we want to turn a
o PLATO terminal into a rich environmeﬁt analogous to a conventional
library and laboratory, where you ‘have at your fingertips many useful
things for 1earning about computer science, and for practicing immediately
what you have learned. It is the student and his instructor who decide
which one of these things they want to use. | ' | ‘

. Also, the pro,ject has an additional goal, namely te serve as "
a stimulating enviromnent for computer science research in a variety

of areas: compilers ’ information systems R artificial intelligence.
o A

This last point may deserve some explanation » since the misconception
is widespread that lesson writing is a routine activity. . It can be, if
one creates poor lessons. It can also be a task as cha.llenging as‘you

p

- simple structure.

'_ wish to ma.ke 1it, if you view a lesson as an intera.ctive program tha.t'
| 'ha.s a certain doma.in of knowledge, and is able to comnmnicate with “
- ._students about the knowledge it has. We feelﬁthat if this necessa.ry

: ingenuity a.nd ef‘fort a.re put into the design of an- ins ..ructional

system and il:s supporting software, such a system ca.n ‘\e ma.de to }

. provide an educational experience superior to the one a student ha.s

in a large introductory col.rse taught in the conventiona.l lecture-,

-

based manner.

Experience . gained during the iupicme °nta.tion

From the technica.l _point of view, the design a.nd :hnplementa.tion)
of a computer-based instructiona.l syste:n is no different than uhe
development of a large system for some othei* a.pplica.tion. , Conventiona.l

soi‘twa.re components domina.te' compilers ’ interpreters ,;filing systems, .
IR

.I ’"da.ta. management.‘ A high level progra.m\ning la.nguage is desiralﬂe, _a.lmost.

A‘ neces sity.

designing clean interfaces between them., '[t is well suited t‘ - progremm

It is considera.bly les:s w‘z 1

me user 8 program to 2 msec of CPU time per clock second under norms.l
system loads. This is sufficient for the conventional lessons) but dt

~ - causes the response time in more complex program_s to-be irritatingly-_

slow. - - _ . I " i' “ | I

. With respect to educationa.l and: psychologica.l aspects of | R ~

a computer-based instructione.l system, it must be sa.id tha.t there is no I

systematic body of knowledge to guide the designer of such a system""‘

The voltaminous litereture on c.u, to the extent that it repor‘t ”'on

experiments to- determine what a.re effective enviro ‘ents for

is given by computc.r. The best a.dvice is to try ever,ythingﬂ_in € tua.‘l.) *

instruction as soon as possib.[e ’ to be prepa.red to me.se ma.jor

modifica.tions in response to feedba,ek from the users ;. e.nd to_disca.rd :

.unsuccessful ma.terial. , 'I.‘he most productive point of view 'seems'" o be

to consider a computer-driven graphics termina.l as a medium with novel

- properties ,.and to develop a crafts of writing interactive progra.ms for

communication of ell kinds, educatioual or other.

Experience us ingl\CSES

' Repeated experiments, questionnaires, a.nd pla.in observa;tion _
mekes 1t clear’ that a large ma.;]ority of the students like the experience '
of working on PLATO, and that ms.ny prefer studving a lesson to a.ttending :'»7

~ .

a lecture in the large cla.sses ty'pical of ir:troductory courses =

is the most conclusive finding of our effort to- evalua.te ACSES in instruction. i
In contrast to this, we have no conclusive dsta for compa.ring the o

performa.nce of students off a.nd on PLATO - usually no. difference between |

 the two 81‘0!11)8 were detected. A connnog'-sense conclusion is that other R

'."':?t'ectore, auch 8s the instructor, end the notivstienaf etudeute, heve
g g _a. meh etronger inﬂuence on the student'e per!ouuce than the

[—

dlrrerence between a lecture end & CAI eeu:lon. -

.! P

B COnclue:lon :

L 'l‘he ACSES prodect can eerve as; e benetnlrr te Micete vhat
L errort is required to develop, meintein, end use e cemputer-bued

 instructional mtem capnu of ueuming . u;ée pert of the teech:lug
load in la.rge mtmduetery coureee., We hope thet qtherl w beneﬁt

from the experiences described in vth:le report.

13

2., The lib‘ggz' 7 of lessons (H. G. Priedman, Jr.)

The hrgent component of the Adsm system is our library of
mtructional lcuonl WQ have over 135 mdiv:l&ml leuons ’ grouped

" 4nto about 20 u’m (Appond:b_: 1) The ujority or these lessons have

‘been crested by students as tem projects 1n courus on computer-ua:lst'ed-
m'bmction, or ™ other a.oa.denic activities, ’ mch as thesea. KQ a result
of this origin, our lessons exhibit l vido vu'iance in level of guauty.

A ty-pical lesson in our libra.ry is a program vhiéh preaents o
for the student to practice and assess his underutanding of the lubdect
matter by solving problems and mmring queltions. It u conpcnble “4n
scope to a tutorial article or short chapter in a boﬁk,' and may Occupy &
student for half an hour to a few hours. ° |

According to this analogy, our library of 135 lessons repreunts
s small publishing enterprise. The effort required in creating and
maintaining a collection of :lnt'enctive programs for instruction (course~
ware), however, is significantly larger than it is for a campt;{q.pie amount
of material in textual form. The main reason why courseware development
is so .lsbor-intonlivé is that, on a medium as powerful as & computer vith
s graphics terminal, one wants to use techniques of presentation and inter-
action that are much more elaborate than anything that could be done on
paper. Implementation of these tochniqu;l takes & lot of programing time.
Moreover, lessons using elaborate techniques must often be revised several
times, because little sxperience is available for guiding one on how to
use these techniques effectively at first attempt.

This need for repeated revision based on experience with actual
instruction, and the significant amount of effort required for each revision,

are the causes for the fact that onlil: fraction of our lessons are anywhere
-10- :

14

" cloee to their "final form". As might be eocpected, thosellessons which

hs.ve been used most in orur own instruction, psrticularly the FORTRAN

sequence, are -the most pol.ished. , -' T T —

- Among the i.mprovements :ho the lessons ha.s been s. certs,in amount

of sts.nderdizstion. For exmple ’ the function of the keys tbet s.].low a
' student to control his path. through 8 1esson has been stendsrdized among
all CS 1essons ’ 80 tha.t a student who bas goﬂe through a. fsw lessons hs.s ‘:‘ :

become fsmilie.r with most of the control optiOns in a11 lessons snd can

proceed through subsequent lessons ‘more easily These conventions are

described in lesson csa.uthors, sto.ndsrd pieces of code, chera.cter sets, |

and micro tables have been collected in 1esson cslibrary; other coding |
suggestions have been co'ilected in lesson cscode. o ‘

Also, seversl conmunico.tion lessons he.ve been completed. Note-

~file csnotes serves & "bulletin boara" i‘unction between s.uthors. Lesson

cscomments serves to record remarks made by students tsking instructiona.l
lessons, for feedback to the authors ofl the lessons. Lesson. csta.l.k a.llows
real-time communication Letween an instructor and each of several students;
this allows human assistance to a student by an instructor #ho might
be located at a different PIATO site.

Finally, H. G. Friedman, who manages the library of lessons,
has written a router lesson, csrouter, which allows students access to the
J.ib'rsry and maintains records on which lessonsy' the student has entered,
which lessons have been completed (as set by es.ch individual lesson),

elapsed time spent in each lesson, etc.

":f' T ‘Ai"'Il,‘:"",“v,v,\“,"f',i"pl‘.'i'r'- e “

\) . B A !
S P RO N RO SR R TMY TR RV A D O AR AL 2 R

3 recover" from detected errors. Insteed, it intere.ct with th student B

) a.bout ways of correcting the—error. g T_t_i 3 B

"e.na.lyze the situa.tion and then repe.ir his program. Automa.tic dia.gnosis

is provided both for compile-time efrors e.nd run-time errors. p
Most components of CAPS e.re table driven. This_;permits
a compact implementation and provides a convenient mecha.nism for
supporting the different langue.ges thet a.re teught et the University.
- Tebles for FORTRAN, PL/l end COBOL have been written and put into
classroom use. - Tables for LISP, PASCAL, BASIC and SNOBOL ere und.er
preparation. Severe time ‘and space’ constre.ints imposed by PIATO IW
(es it services 500 terminals concurrently) limit the cepebilities of

CAPS to simple programs using only subsets of the e.bove programming

: engtmges. CAPS is sufficient to hendle the computing requirements '

for the greater pe.rt of a first semester progremming course.r Subset _ |
number five of SP/k [5], for example, is typica.l of the :hnguageifeetures:)
supported by CAPS. - B

3.2. System organization

The principle modules of the system are a progrem editor, e
syntactic and stetic sema.ntic error dia.gnosticien, en.interpreter for
each language supported, run-time error analyzer, a user progra.m file

manager, end a gsystem's ta.blebuilder and file mana.ger -(Figure_‘l). _

. PLATO “AND \ -
OTWER' LESSONS

iNTERPRETER ([|- &

EDITOR

TERPRETER [.

Wl

g CURUNSTIME -\, -
o emmor)
. /ANALYZER - - /.-

EDIT~TIME
‘ERROR
ANALYZER

- —'-———--_—————_-ﬂ_.ﬁ _'
.
-
-

i

i1
TABLES

FORTRAN| .
| vasies |

1

cooL
| TanLEs

K

,¢u:

e

Q ;
ERIC wigsl g

 TABLE
*_BUILDER -

Figure 1: CAPS B&s_t‘em‘z .Oi'g’.e;nize,tic;n,
. a3- 0 T

e e fe v ae

r—

;.

)
[

Sy e g,

Ee.ch of these modules is written in. TUTOR - a. FORTRAN level programming

:'la.ngua.ge and the only one used on PIATO IV [10] - end holds the

‘.-"position of a lesson within the PI.ATO ™ system. All lessons are

potentie.lly reentrsnt pure procedures a.nd they ere the unit of multi-

" va"-if_:‘_‘ programning in the PIATO IV system. B

COntrol of the system is distributed throughout the modules,

but the studen+ is never s.we.re of the system modula.rity end never hs.s

'to ranember comns.nd synta.x, bece:use eech time the system is rea.dy for

we commsnd, the module tha.t will interpret 1‘he conmend displays.,e.h menu '.,_ _
of possible ections. Usually pressing one key will initiete 8 new

action.

During a programming session student-specific commmciation

' between modules is through the block of storage (1500 words) a.ssigned

to ea.ch terminal. This block conta.ins the only internal representetion
of the student's progra.m, the sssocieted symbol table entries a.nd
miscellaneous informa.tion identifying the student e.nd the lsngue.ge he

is using. The .internal representetion of the student 8 Aprogram is vused

' “both to regenerete the listing on the screen and as the "ob,ject ‘code"

.for the la.ngusge interpreter. It is a simple tokenize,tion of the input.

Between sessions only programs explicitly saved in the user progrem file

are reta.ined. ' _ ' f
3.2.1. Progrem editor : :) T, e

Each editor in the CAPS system consists of interpretive tables
specific to the 1anguege being compiled; common driving routines to
interpret these tables; and a few routines, specific to the 1enguege, ‘
that are called from the interpreted tables. These tables are built

- 18-

<14

oL o o ' : , 1
| Student |-e~-===>| Editor |=------>| Reverse .|
{-Terminal | Koo o J{e=wm===] Editor |
Lo e T IV I
e 4 R . d. - 7R —d
o
"‘
|
|
v
| Lexical |===s=a=3> Name Table
| Analyzer | - o ' B
| |
[N V'l :
N
Y
|
|
v _
r L] . f “l‘
b o I | | ' =
| Conpress |{====-~-=| Syntax |=s=za=x)> Trace
| #odule |=======>{ Analyzer | o
I ' | |- |
Lf d . i - '] ‘
- |
|
|
a
I .
.v '
(Parser |s=mm=s=u> Symbol Table
| . |sssmass)> Trace =
| i L
[d
— Figure 2a: CAPS Compiler Modules

~~~~~
o .




'.'from assembler-like source code written by a compiler implementor.
Arter generation, these tables are stored in common where they are loaded
into *nc¥* variables as needed in compiling student programs ',l‘_ P
G Flow of control in the cAPs compilers is shown in Figure 2e.
The editor looks at each keypress the student enters frqm the terminal
If the key indicates a text editing runction, 11: is performed by the -
editor. 1If the student is entering new text, each keypress is passed -
on to the 1exical analyzer. ‘When the 1exical analyzer receiyes"a complete
token, that token is pessed on to the syntax analyzer and parser for S
compilation. Since each keypress is processed as it is entered, the
compiler can give immediate error messages when the student enters an
invalid language construct. . o
While compiling new text, "Trace"'information‘is stored,
allowing the Reverse Editor to uncompile tue student's prOgrem as the
student backs up to make a change. Occesionally the storage area for
Trace information gets full., When this happens, a compression unit is .,
called vhich removes alternate entries from the Traee table.x After ////;//’Tf
compression is performed, the reverse editor can only back up to ?2,/
alternate tokens. If necessary, it will back up to the previous token
and then forward compile to the current token. In practice, ‘the
compression routine may be called three or four times for a student
program. After four calls, there is Trace information for one out of
every 16 of the first tokens entered. dloser to the "cursor" where
the student is working, the Trace information is availsble for everyf:}“

token, or at least alternate tokens. -

The module labeled "syntax analyzer" in Figure 2a is Just an

20 | ”




' interface between the lexical enalyzer and the parser. Tts function
his to keep track of trace information and to;insure that the correct

tables are loaded for each routine.

'3.2.2. Editor tables

Both the scanner and the parser are table drivenrx Tne ‘
scanner's table is a state transition matrix derived from the regular :
grammar that defines the tokens of the programming language. Special' o
entries in the table are provided for handling fiXed-format languages
and continuation 'cards". (See Wileox [lh] for more detailsm)yf

Thevparser is a recursive descent parser with’onedimportant
difference: a singlelrecursive procedure‘can be written tofrecognize.
the instance of more than one non-terminal. 'The non-terminalitnatfhas'
been found by. such a procedure is passed back to the. calling procedure
where it can be used to choose the next alternativeﬂ (This is eqnivalent
to the separable transition diagrams'of.Conway [2] or Tixier.s [13] RCF
languages). TIomet [7] hes shown that such a system of procedures can
recognize all deterministic context free languages.'

‘Tindall [11] has designed a langusge for writing the
procedures.of the parser. The language provides assembly-like commands
for obtaining and testing input symbols end performing simple symnol
table operations. Mbre“complex semantic actions are carried out by
TUTOR procednres called from the parser.

| All of the tebles for the editor can be constructed inter-
actively using the table building modules. While under development
'the tables are stored on a disk file maintained by the table'builders.

For "public" versions of each language, the.tables are assembled into

21



o '=fterminals_/ editing programs written in that 1anguase- With this Wﬂtem:

-memory. However, the lexica'l. and pa.rse tables_

 and only one of them can be 1oaded at once. This is 'significant since l

.'Figure 2b shows the layout of these areas. e "' ~i’,

3.2.3, E4it time error

The editorx signals an error to the student by ﬂash:l.ng a | .

box around the inva.'l.id character or symbol (See Figure 3a) While .
the box is flashing, the editor monitors the student's key presses.
Those which would move the cursor beyond the point of error are ignored,
the other 8 are processed normally When one of the keys ‘moves. the
cursor back from the point of error, the box is erased and normal
editing is. resumed. | ‘ |

- A special key, labeled HELP, provides the student with |

automatically generated diagnostic assistance. The diagnostician

-18- o

et
-~
,.!"




oocm o -  ',{'¢'j;Ecs";gy:ha*$'

_ nc variables (1500) - ' - . ‘Storage - - .. (64U4) .
SIS : _parse. Storage 53

" Lexical Farse akotage

. or - -

. Parse
Tables

~Srabol mabie o5,

-—--

., Name' Table . 647

-

2

;-p —‘qp- v-‘p l—lq

=

 Char, Table'.. 168

~Par'se Storage 53,

CK

©Hash Table .20

P

<

~ Sysbol Table 109 L Text.

N ¢ B

~Sysbol Table 210 " Trace . -

r—T=T—T-T-

. — variables . 88
Name Table ‘' 110 e

Q

<

Name Table 64 ‘Comson .l\.f(12§?¥{“"”

<

Char Table 168 BT
X . Parse.
‘Table

" char Table 119

_.p-qp-q-‘.—q-;-qp-q-.-qp’
a'f-

400

Hash Table 20

Texé, C 60

Lexical

Trace - 98 Table,

variables - 88

g - - . . R ‘
L-db—il——-h—-l—--I-—-I-—Jb—-b-')_-_db_-b'—d-"-i—_-—_—.-!d
Y

o - g e o e gD G agn -

400

Pointers 22

o ke e e e e e o

Le]

: Symbol Table 210
v = variable portion N '

¢ .= cocnstant pertion
number = length of table

Name Table ”1110;

0

--—-———qp—-F_————-—;-.———-_—-.q

Q
e ane ol o ke o ——

Char Table 119 :

T

Figure 2b: CAPS Editor Data Areas = .




: t'ﬁbinvoked’by this key uses an algorithm similar to one proposed by
Levy [6], but modified and improved by Tindall [12] for use in the
interactive environment.‘ The actions of the diagnostician will now

-,be_explained. Tbese actions are illustrated in the continued example

in Figure 3.

The first message generated by tue diagnostician announces

‘the type of the input symbol (e.g., keyword, arithmetic operator, etc.)?f'ﬁ

d states - simply that in the given context it isywctzpermitted by;the' o

lansuﬁse (Figure 3b) The Sy'mbol class 18 derived from : nthe R

;symbol table. The language tables include 8 mapping from values, found

" in this- class field into a suitable Ehglish phrase tovbﬂ
and other messages. _
After this informetion has ‘been displayed, each time the
student presses the HELP key again, he is shcwn a modification he- could
make to the text that would make the ini*ial portion of his program
legal. These suggested modifications are generated by attempting to
insert, delete or replace a single symbol somewhere in ‘the prefix of the
sentential form that had been constructed by the parser up to the point
of error. Only those modifications that lead to & successful parse all
the'way:to'the-cursor arevreportedrto1the user-(Figure 3e=31). - -
 Modifications are attempted starting at the cursorvand‘then
. working back toward the beginning of the program, onebsymbol;at a timef’
Using this algoriihm, each successive modification tekes more time to
compute, but the probability of a successful parse”is‘less."The,most
likely modifications will be suggested first. |
As the error handler works its way back from the cursor it

backs up the parser so that it is alwnys ready to accept input from the

24

-20-




M) FILE = womkseace . PL/I WORKSPACE(14-010)  SPACE = 245
' TESTi....PROCEDWRE:
“vveeero DECLARE, (A,B, MID)FLOAT;

©..L1:....GET,LIST(AB): o
"--.--....MID.-.( ( A + B ) / 2 0-.}

») FILE = worksace PL/I'V*VWORKS'VP'A_CE(IQ-OIO) _SPACE = 245
OESTLOERESS
+reseun o DECUARE, (A,B, MID)FLOAT;

eoL1:444 GET,LIST.(A,B):
V‘IEIIOIIIIMID = ( ( A + B ) / 2 0,-{*

**ﬁ%i.**’.ERROR..*....#&* )

Lo moa - T0 le.
THIS PUNCTUATION SYMBOL IS NOT PERMITTED HERE.

a-—-——-—.--u‘-———————-—————_—————-————-——'

PRESS (ELE) FOR A DIFFERENT SUGGESTION. :

_ c) FILE = WORKSPACE PL/I WORKSPACE (14- 010) SPACE 2‘!5

4 Ld v L4 L4 1 4 L4

TEST:....PROCEDURE:

aeveees e DECLARE, (A,B.MID)FLOAT:
l!Ll:llllGETlLISTI(AIB);

evennMID= G GABDL/2,0,.

L4 —r—ﬂr—v——v——v—-r—1r—v——r

.......*..POSSIBLE CORRECTION..........
REPLACE [] WITH AN ARITHMETIC OPERATOR.

'PRESS GEP) FOR A' DIFFERENT sussesnou.

(@0 OR @ TO FIX.

FIGURE 3. EDIT-TIME ERROR ANALYSIS
25

L
e




FILE WORKSPACE
TEST ....PROCEDURE
.uuuumamsmanmwmm

o1, .. GET.LIST, (A,B);
‘IIIIIIIIIIMIDI=((A+B) Z 20!!0

QQQQQQQQQQPOSSIBLE CORREC‘.IONQQQQQQQ&QQ’
INSERT “)* IN FRONT 0F [,

PRESS-FOR A DIFFERENT sueec nom ’

F) FILE = WORKSPACE. :  " pUI WORKSPACE(IH-OIO)  SPACE £ 5
TEST:. .- . PROCEDURE:
.nhuumamemanmwmm~
VL1t GET.LIST. (A.B):
II‘IIIIIIIMIDS ((A+Bﬂ / 2011:"

..........POSSIBLE CORRECTION’..‘......
INSERT )" IN FRONT ofl_], |

PREssfzf_EDFon A DIFFERENT suesesnou.

FIGURE 3. gon,T:-,—nMg ERROF‘?I"A&ALVYZS,IS

Aruitoxt provided by Eic:






—

FILE = NORKSPACE SPACE -5

I NORKSPCE(M-OIO)

EST:ave .Pnocenuae.
Tv+ee e JDECLARE. (A.B, MID)FLOAT:
11, 6ET.LIST. (A,B)s -
........mn. GG AE.B ). /. 2, o..:

’”“““'Possmz Coaaecnon’"“”“ o - 1149 '.'ol'!,:,- 70 FIX.
Insenr #y* 13 ‘rrONT OFL_J. ‘ . RIS

. —b—--ub-_pﬂ\-—_———d—h;—..—'-'

PRESS-FOR A D!FFERENT SUBG -TION-' ‘

Y

FILE = woRkspAcE PL/I wonxsma A-'u-om) smce 2us_m |
L AR -'v': LA Ep B ST
rEST ....PROCEURE: SRR CAILT

vuve oo «DECLARE, (A.B, HID)FLOAT:
IlLl IIIIGET LIST (A B)l . ‘
IIIIIIIIIHID.-I('A+B)/20..’ ’

'““”'"Possxm.s Conaecnou““'“’“ oa m 'ro FIX.

FILE = w&ﬁéﬁce PL/1 HORKSPACE(I'I-OIO) SPACE = 245
7 —~ v — v
TEST:....PROCEDURE;

vv 00000 DECLARE, (A.B,MID)FLOAT;
L} lLl: [ ] IGETILISTI (A‘.B)’
ssss oD IHIDI-I (IEIAI+I?I)l/lgIOI ll:

-

#e04040020DOSSIBLE Conaecnon"’“"”‘ DOR @D TO FIX.

Press (D FOR A DIFFERENT sussesnou. -
FIGURE 3. EDIT—TIME ERROR»TmLygis |

93~

. » : s . . ‘
. ) o . IR TR ‘ L e "
4 ¥ e F N et g O S N A At HIET S e et
A e, e, W L N a rally S B WA TR




2 FILE = woRksPAce - PL/1 WORKSPACE (14-010) SPACE - 245

TEST:....PROCEDURE; -

sessee nDECLARE—(A B HID)FLDAT:'
voL1:00. GET.LIST.C.B):

“n““mmmﬂJA+B)/2m"

seaseeeeePoSSIBLE Coanecnou‘“"““‘ GRD 0R @ED T0 r-‘xx.
REPLACE ["_"lmm A NUMERIC_BUILT=IN FUNCTION.

———— ~- —*——~— ——————4———4—

 Press @® Foq A DIFFERENT SUGGESTION., SIRERE
Paess - TO SEE A LEGAI'. Nuuemc nuu.r-m Fuucnou s

K) FILE = WORKSPACE ”'f'°' PLII“HORKSPACE(IH—OIO) | SPACE "zus, , .'?

TEST: ....PROCEDURE

~— ivsvsesssDECLARE, (A.B.MID)FLOAT:
llLl llllGET LIST (A B)o -
.““””mm.@AA+B)/2m” 3

See0anaesePOSSIBLE coanecnou“““““ - .OEDOR €
RepLACE [ IWITH A NUMERIC BUILT-IN' FUNCTION "ABSY. "

—— em— —————————.————,

PRESS G&ED FoR. A DIFFERENT susees‘non. lednel
PRESS - TO SEE'A LEGAL uunemc nuxu-m Fuucnou.f*

L) FILE = WORKSPACE  PL/I WORKSPACE(LU-010).  SPACE = 245
W—#ﬁﬁ )

. TEST:....PROCEDURE: . o L L
Teresseencld JMID)FLOAT: _ : ‘,f ;‘ ;ff

o L1:....6ET,LIST. (A.B): — o REE
---n----n"lD-'-En(A"’B)/20‘-.'

..........Poss lBLE CORRECT lON..........
REMOVE [ ] FROM THE PROGRAM,

FIGURE 3. EDIT-TIME ERROR ANALYSIS |
e8

24

' oar-m TO FIXy. -



point of modification. The symbols selected for insertion and.replacement”_
are‘thosevsymbols that would be accepted bv.the parser at the point of
modification. This'information is immediately“availahle'from the parser's
table. e - | "
~ The symbols that can be used as a modification are not only
the terminals of the language, but include the non-terminals as well.
""""" (Non-terminals become procedures in the recursive descent parse.) This‘

allows the CAPS error handler to communicate in general terms such as

_ expressions , "statements“ and, as in Figure 3f,'fbuilt-in functions ."-2
The more conventional automatic schemes are restricted to a vocabulary ‘ 'p.l‘{?f
of terminal symbols. The phrase used for each non-terminal is supplied‘

by the language implementor. Note that as the recursive descent*perser'_

is backed up it -returns to procedure levels closer and closer to the

procedure level of the sentence symbol and thus the error handler first
- glves suggestions for local modifications and then, only when these faii

will it suggest more global modifications.;'

Whenever a non-terminal is involved in a modification, the---

student is given the opportunity to'see what a non-terminal of that

type looks like (Pigures 3J & 3k). Thus whenever a general modification

is suggested, more detailed suggestions are aveilable if needed.

Currently he is shown only the first symbol of a non-terminal - Just

to get:him started - but it would be possible with conhiderable effort

to display the entire non-terminal in some convenient form such as BNF.

3.2, _@:_eﬂw_n

Execution of the’ student's program . is perrormed by interpreting

- the internal representation produced by the editor. The.internal

.representation is Just a tokenized form of the program, laid down in

»‘" [
o J" . ~

-25-.

- s . : ‘: - n N
L T N T S R P R L S DO




and comments. This internal represen at:lon clea.rly fa.vors the editor,

:lnterpreters. . So the'interpreters

see the:lr a.lgorithm ea:ecute a,nd 'obba:ln a better _feeling for ‘what ea.ch | :

-:.",.

ERIC

Aruitoxt provided by Eic:



’ 5?this program.. In cAPs, with its emphasis'on aiding instruction, the

'fvgfram hhm information about what specific:vections of his P gram are

{goal is. to discuss with the student the.natureb

program execute with a flow trace, students often think something has

,gone wrong when it executes so quickly without trace - even though the

output,produced is identical.

'_x 3.2 5 Execution-time error handling

The main advantage of interactive error handling‘is that

the programmer is on hand and" can interact with the system to debug

vthe error- obtain o

supposed to, d°’ and fi“ally to. Sussest changes thachhe might make‘that.?whmm

7‘system and (2) he eventualLy learns how: to debug programs by himSelf.

In GAPS, ‘the: interactive debugging session is directed by the';:Tﬂ
system and not by the student. This is essential because the beginning~w:”

. programmer does not know what questions to ask, he does not know how to__

debug. An added benefit of this is that the student does not have to

learn to command language for. the'debugging package.l.i»

e
JIPRE

e

veaae T T

The CAPS Tun-time error analyzer [h] is given control when D

one of the interpreters has detected an-obvious anomaly in the run-timeg_fﬁf

N
~~_ -
s s, L

| environment - a zero divisor or & subscript out of range, for example. :_:“E

The

of this anomaly ’. ,} : ’.': i ‘; j'f-gh;,;t,ff“f-""

Lere

In general an anomaly will be caused either by an error in '

assigning values to some of the variables involved or. by an error in

831

':..,f27f; -




in the second case, the analyzer locates the cause by reverse-executing

'setting up storage for one of these variables. To locate.the cause of

the error in the first case,-the analyzer must reverse-execute the program,
searching back through the history of execution to find_out vhere and

- how those Avarliables were assigned the troublescme values. Similarly,

the program, to the point of instantiation oi‘ the variable and. then searchilng'_’
bacl; through the history of execution "to'find_ vhere and how the variablesv~ L |
that controlled the' instantiation“were asSigned the troublésome :values. : |
N ¢ both cases the analyzer engages in a discussion with the
student while internally it is reverse-executing his program from the
point of error look@ for assignments to one of the troublesome variables
 involved in the error. Once such an assignment has been found,_ it?is
 shown to the student. TIf this does not help the student locate the '
,cause of his error, the error analyzer then looks at the expression ;
that computed the troublesome value to sze if any suspicious conditions

" are present that could be the cause of th:”error. Whenever a possible

i' cause is located an appropriate discussion about the condition is initiated.'..,»:'._

For this analysis ’ a common misconcem.on toble is used. , The

: table contains information about situations in the language that are

'potential trouble spots as well as templates for the actual discussions '

" that should be initiated it the situation is recognized. : Discussions , |

3

L located in the table are referenced during expression analysis by an R

E ‘(operator, value) ‘pair in the following way As an expression is being

o ana]yzed for the cause’ of the error, each operator and the value it

returned are looked up in ‘the table. I the pair is present the discussion kP

’corresponding to it is initiated, otherwise analysis continues. The

analysis, of expressions is done by a pr_e-order traversal of the

-

-28-




the s:ltua.tion. :ﬁdt}i iﬁi&r; ;i;’hei‘e.@ay'--i;e mo f.l;'

added. . Reverse-exetmtion :ls then resume

ERI!

Aruitoxt provided by Eic:



‘value 0. When the student requests more help, the expression omputing

S

,PL/l program shown, he would recelve the execution error as indicated

"the value assigned to A 18 analyzed. ; In this csse (fixed divide O) L
' _appears in the common misconception ta'ble for PL/l e.nd so the.‘._ Y at;

that gave A that value is located and shown to the student (Figur hg)

© common misconception table. In addition, each language inte reter must
v_{generate 8 history o.f execution in a stande.rd form (simila.rj to tha ,‘used '{ :
by Zelkowitz [15]) and provide & routine to construct expression trees

from the internal repreav-*’fation o.f a statement. e

:'3 3 Ewn,uetion 3

1;,\' oo .

. at the bottom of Figure ba. If he requests help, he receives the display '. -
) 4in Figure hb showing him: where the variable A we.s assigned the” troublesome o

il le

shown in. Figure hc is presented to the student. I8

Since this is an input statement involving the only troublesome value, o

the analyzer terminates with the conclusion shown in Figure hh.

'I‘he run-time error analysis algorithm is essentia:l.'l.v angun.ge . \ --i..;:"

independent. ~The language dependent information is containe, in _he

i CAPS 18 an expe:iment ‘in extending the concept o.f pedagogic : '

N programing systeme to the interactive environment. The logical setting

34

) "30- . -
' J Sl Te o L . co T g e L PR . !
e i i i e B e n L T e e ity et



EK

Aruitoxt provided by Eic:



PAruntext provided by eric



EXECUTION-TIME ERROR ANALYSIS

A% -;V.EXAMPLZ,.‘_..PROCEDUBE omons (MAIN) "‘i{’_{"i-)':'_f ~’

L ~~ BOSITION OF"ERROR' i
Tuxs STAT“'ENT'GAVE A AN INCORRECT VALUE or* .

--THIS DIVISION .OPERATION PERFORMED HERE-WAS; INTEGER .
DIVISION. IN THIS CASE, THE RESULTING VALUE WAS
- ZERO BECAUSE THE NUMERATOR WAS LESS THAN THE
vQJDENOMINATOR.“_

Vo

. PRESS (8D To EDIT YOUR PROGRAM: GP) FOR MORE HELP.

O

c) POSSIBLE CAUSE OF UNEXPECTED RESULT., (PRESSES RELP“AGAIN){igij
FIGURE4 Execunon-'rme ERROR"“"NA ysis .

\\\\\\



it

- GAVE_

Doss A'VALUE OF . % (:REASONABLE. FOl
“ANSWER NO UNLESS YOU ARE. ABSOLUTELY. -POSIT‘IVE

/ e— -_

ERIC

PAruntext provided by eric



THIS  STATPMENT GA

ERIC

PAruntext provided by eric



ERIC

Aruitoxt provided by Eic:






&
While no one has yet developed a universally accepted

technique for organizing a body of knowledge, there is some consensus
that a useful point of view is to model knowledge of a subject as a
network built of concepts and relations. Hence the data structure

for the GUIDE c 'ncept space is simply an abstract graph where" the ;
nodes of the graph are concepts and the arcs are relations between
concepts. The choice of this extremely simple yet powerful model was
fully vindicated when it was put to use. I'b‘wa.s found to be adequate
to ii:corpora.te the synonvm dictionary, the hierarchical ‘cla.ssifice.tion ‘
scheme, and the term elusters whi‘.ch.were Abriginally preposed as- separate
components of'vfhe concept space.‘ Also, it serves as a keﬁerd index
(holding all keywords which have been attached to lessons‘b)vrrla.nd a
thesaurus (holding all sub;]ect-mp.tter terms known to the system and

“showing -how they are related). Furthermore, when it was desired to

nd.ndex to the library of 1essons ’ the concept space already

M‘bo do so. And flnmy\it\was possible
il

T~ —— — —

to specify the structure of a course by means of-¢a

T —

“provided. the necessa

in the structure of the concept space.
It should be emphasized that the word "concept” is used rather
loosely. Any word or phrase which is the neme of a node in the concept
space is called a "concept". Similarly, the relations used in the
~coﬁcept space were chosen so as to be intuitively clear to the usef.
These relations coeld; be readily extended if if proved' desirable to do

so, or if a universally accepted set of z:elations emgpg__topics were to evolve.




i'he relations currently.in use are: fgeneric-specific;,'v conta.inor-
conta.inee (which imposes an index structure on the lesson libra.ry) » related
. '(for concepts related, but not by one of the more specific ca.tegories),
. synonym, owner-member, an2 prerequisite-sequel.
... hconcept record, then, consists of the 5°“°5P'°,“°"°" & list of
lessons in which the concept is a keyword, end a list of rela.tion‘snips
with other concepts. o

4.3. Word to term translator

The word to term transla.tor accomplishes the task o:\“' transfoming
a sequence of input words into a _sequence of terms recognined.by the |
system. This is done by extracting the leftmost word of a.n input request, S
applying & hash function to that word, and look:lng' in the ha.sh 'teble in
the appropriate location. Entries are arranged in the hash tabe in such
a way that it is possible to extract from the origina.l request the longest
:possible substring which matches a term known to the system. The progress

of the tra.nsla.tion process is communicated to the student by underlining

each term when it is found in the term dictiona.ry.

‘The»English translator a.ccomplisnes the “bask~of_tm§ﬁ>_‘“__ ——

r—————

\
a sequence of input terms into an intermediat”“representa.tinn_wier

et —

ey

processing. The translation is not based on an elabora.te linguistic
analysis; rather, the translator-searches through a space of partia.l
meanings determined by an anslysis of the domain of discours.e.‘ The
translator's approach to dealing with natural language can be liltened

to a person who is hard of hearing. Even though such a person does not



T ———
o
e

SRR K
a.ddition to be ms.de to the intermediate representat

the “request. This understa.nding is ba.sed ‘on that portio’:?'
whic‘n has been a.na.lyzed up to that point. If the tra.nsla.tor rea.ches a

dea.d end in its sea.rch for a meaningful interpreta.tion of the request, N
it backs up to the. previous term and looks in the. sta.te ta.ble for an _' SRR

alterna.tive interpreta.tion. This process is continued ‘until a.ll choices, :

_ " are exha.usted or a consistent interpreta.tion has been foun _‘VZ.Using this

approa.ch elimina.tes the need for storing a gramma.r of English (saving a
considerable amount of memory) and allows the tra.nslator to handle
ungramma.tical or partia.lly understood inpu:ts.

. The. intermedia.te representa.tion is a nesting of ﬁmction ca.lls “.:-‘:?-3¢‘-*;5"~.

to routines in the request”‘pro‘c"es*sorMThe*psossitl}i f\mCtions a.re  chown
in Figure 3. ‘The basic idea. is that most requests h:;cn» si.inple synta.x,_'v. '
one section indica.ting the type of. information desired, a.nd the other a |
series of specifica.tions limiting the doma.in of interest. B The functions

. can then ve divided into_.two groups: those specifying a pe.rticula.r lesson .

o7



; @ dead state
© | ac‘c';epting states

}‘"58 . Figure 2: The State Diagram of the Non-deterninistic
- Automaton




“t

: ..ior set of 1essons ; and’ those for particula.r types of informatiOn, having

o as arguments a specification function, or a nesting of type and specification

functions. This is discussed more fu11y in a Ph.D. thesis by Pradels [el.

-

m_--h.5‘ A.-Pa.ragaser._ B e e -_h ~ ST -w_r _...
The pa.raphraser produces a pa.raphrase of- the origina.l request i . ;‘.f.'-‘?:

” 'based on the: intermediate representa.tion produced by the English translator,
a.llowing the student to confirm whether his request ha.s been properly
understood by the system. If 80, he can proceed to._the j-response... .If'not?,‘_:"‘ .
he can immediately rephrase his -request." (Also, inma.m' -;ca;se.s' , he vca.n’

deduce what caused the system to misunderstand his request.:) f

4,6. Request processor

" The request processor accomplishes the task.of transfoming
the intermediate representation of a request into & specification of
the type of response to be generated. By analogy with the output of
the English translator, this specification has been called the "intermediate
form of the response". |
Several simple heuristics are used in the request processor,
based on the principle of determining as quickly as possible which area :
of the database contains the answer to the original re\quest,._"and what | |
possible response of the system will displasy that area of the: database,
- In some cases, the request processor simply indica.tes to the response
| generator the area of the database to be displayed (for example s the )
term number of a course record) In other cases, the request processor

assembles some data from the database and passes that information to the R

response generator (for mcample, a list of term numbers or lesson records

which mstch a given specification)
' . o . : _55_




Specification functions:
These functions return a set of lessons depending on the value

of their variables.

IN : has two arguments, a course name and a
" lesson name, It returns the lesson defined - -
by these.

IS : returns the set of lessons which are defined
by characteristics other than thgir names.
These characteristics might be a "Boolean list
of keywords, a type (lesson, exam), a course
to which they belong, an author name, a level
of difficulty, a sequence specification, a time
period, or other specifications, such as whether
the lessons have already been taken or not. Any
of these characteristics can be specified or negated.

Information type functions:

TF tests if the set is empty or not

AB returns abstrects of 1ts elements

AN returns names of author of its elements

NB returns the size of the set

GR returns the grade required by the instructor

GO returns the grade obtained by the student

TS : returns the schedule to achieve relative to the elements
of the set ~ . '

TT returns the schedule achieved by the student

PQ : returns the set of lessons which are prerequisite to the
argument set

SQ : returns the set of lessons which are sequels to the
argument set

SI : returns the set of leSSOns which are similar to the |
argument set

BE : has two arguments, a lesson and a“set;'»Tegts if the

lesson belongs to the set.

Figure 3. Request processing functions
-56=




14 7 Response Lnerator

'.l'he response generator accomplishes the task of transforming
the intermediate form of the response into a display which can be
pre_sented to the userz There are four basic types of response which

will b'e discussed below: list of 1essons y record display, graphics .

- display, and feedback message.

h.7.1. . List of lessons .

| The response to & large number of requests presented to the |
GUIDE is & list of lessons ma.tching a given specification.v For this -
response, the response ‘generator: simply produces a 1isting of the neme
and abstract of the lessons which ‘have been retrieved. . ’ ,:

h.7.2. ‘Record display

Record displays are generated for 1esson, course, and student
" records, In the original design of the response generator, it wes intended
that most requests would receive a prose response. As an intermediate '

step in the development toward that end, it was decided to display the

...,...,..._..—-_.......
,_,,.._ s
RO

v _‘_,_Nrequested., This approachw to” the response proved to be 80 successful

that implementation of the prose approach was abandoned. ; .

~ With this approach, we e.nticipate in advance a 'whole sequence of'

- potentia.l questions (hence reducing total CPU usage) and are'j:hble to properly

'answer a large class of poorly-phrased questions. This allows the student

“to. type shorber requests and gti11 obtain the desired information.




: ‘.h“‘.'?.'3. Graphic displays |

of graphical displays to help present different points of view of the - :j B

- hslped solve that problem.. '.l‘he GUIDE utilizes three different types : -»--?5“ ~

One of the challenging research tasks in implementing the

| GUIDE was the development of an effective means of comnnmicating the

structure and content of the concept space. This network possesses a

w_,very rich structure of interrelationships which is difficult to describe.ﬂ_m;w_.

Fortunately, the FLATO term:lnal provides a8 graphics capability which T oy

concept space- the neighborhood, hierarchical, _and mixed mode displays
The neighborhood diSplay shaws the concepts which 1ie in the

immediate neigh.borhood of a given concept Figure 14 shows a sample

neighborhood display The first circle of nodes shows the "first

generation" of concepts--those that are directly 1ated to the central

concept of the display. 'I'he secondary circles of nodes. how the second
generation" of concepts--those that are directly related to the first
.generation concepts (and hence are two generations away from: the centra.l '
concept) Exploration of the concept space can be accomplished by

requesting successive displays where the central node in- each new

- display has been selected from the first or second generation of the g

_previous display.

e

Whereas the neighborhood display gives & sense off_'_'distance"

in the concept space, the hierarchical display imparts a sense" o?“direction Yo

Figure 5 shows a sample hierarchical display. Basically, the hierarchical
mode enables one to traverse the classification tree, pursuing topics by
narrowing or expanding one's scope of "interest. The sense of direction

imparted by the hierarchical mode is how "high" or "low" a given concept

— -56-




g generic
s specific
¢ containee

n containor

denotes concepts
denotes concepts

what next? (active keys:

r related

Yy synomm
o owner
m member

used as keywords

1 input output
z.progrgmming conc

epts
3 io

o ..__,__...,..__.....‘._..i.,.o,._t.._er.ms.y_.... .................. Y ST

5 software

6 data type

7. data structure
8 data storage
9 data operations

18 control ‘statemen - -

11 subprograms
12 input . .

13 output

14 format

15 edit

16 put

17 get

18 read

19 write .

28 card reader

. 21 printer

l,e,%,@; h,n,m; r.o; BACK1 for incdex)

Figure 4: ' Sample Concept Space Neighborhood Display




CSGUIDE : 1 ai langueges ]
Concept ‘ : 2 programmxng lang
Space . uages '
. 3 ai methodolongs
- = R R i - o techmques— JOUSY S
. 4 software ..
g el\' : 5 artificial in{el
o ligence .. T
6 computer aexencc
7 computer applica
\ . tions . . '
9 lisp :
€ ¢ .18 planner
\ 11 conniver
12 ga4
, : " 13 sail
€ generic r related
s specific Yy Synonym
¢ containee o owner
n containor m member .
denotes concepts '
denotes concepts used as keywords : ,
what next? (active keys. l,c,s,e; h,n,m; r,o; BACTK1 for index)

Figure 5; Sample Concept Space Hierarchical Display

-60-

6.2,




CSGUIDE —— .1 do loop

Lessons & : @ N 2+plido
R /' B 3«fortdo
‘ 4B 4sloops

..‘.".,...._4 S At o .t b e NP T — P - i _.Ns PL/I"‘LQI'\RU&CC
: 6 loop

7 do- stafement
. 8 xteratxori '
9.plt.
11, fortran.

dent Procramnm

8. FORTRaN Language '

15 Language Indepen .-

oo - st e s

D dehotes lesaons

denotes concepts used as keywords
what naxt? (active keys: 1,c,s,e; h,n,m; r,o0; BﬁCK! for index)

Figure 6: .Sample Concept Space Mixed Mode Display

-61-



‘the cla.ssiﬂcation : ee,"and here it is relative to-the "zoot"

of the' tree--the concept "computer.science. " ‘ v .
" The mixed mode displaar was' mtroduced to facilita.te the

grephical presentation of the set o:f' lessons which a.re a,tta.ched to a

gi«.mgiven»concepb.-- Tt.is.called m:l.xed since both lessons. end. concepts». ]

appear in the display An exemple of such & d:lsplay is- shown in
_Figure 6. An internsting :lnterpreta.tion of this display is tha.t in'a.
"very real sense, & lesson can be viewed as & rela.tion in’ the concept
pace, providing a link between verious concepts. For F'exa.mp]_.e,‘- _
Figure 6 , the concept "do loop" has the "fortdo" reietion" uitn.the :
concept "fortran." B .

o7k, Feedback response

e e i,

A feedbeck response is presented to the user asking ror

clarification or further information in three situations: when an-
arbiguous term is used, when the translator can't find a velid
interpretatj'.on_.o‘i; -the request (often caused by a significe.nt word.of
the request not being in the database), or wnen the"-reQuest pz‘ocessor
does not ha.ve sufficient infomation to process the request (e.g., no

| student record available),

References

_[1] E:I.and, D. R.. An information and advising system for an 1ntroductory

computer science course, Report UIUCDCS-R-75-738 (Ph.D. Thesis),
Department of Computer Science, University of Illinois at Urba.na.- :
Champaign, June 1975. ‘

[2] Predels, J. L. The Guide, an informetion system, Report UTUCDCS-

R-7h-626 (Ph.D. Thesis), Department of Computer Science, University
of Illinois at Urbana-Champaign, March 197k.

- 87,

62-



Interactive test construction and administra.t_ion in;

he ge'nerative 7

The Genera.tive Exa.m System is & completely intera.ctive system

Cea

f\for the construction a.nd administration of exa.mina.tions. Since a.ll tasks:";.f: f

associated with exa.minations (from exa.m wri‘bing through analyses

'results) are handled intera.ctive]y in‘.f.the ‘ ystem the Gsne atlve. Bxan

receives slightly different questions H consistent a.nd aecurate exam.

_grading; the ca.pability of allowing each student to review the scores a.nd'

correct a.nswers on his exam immedia.tely a.fter he finishes it 3, and the
inmedia.te eva.ila.bility of a complete analysis of exam results a.fter a
class finishes an exam. _ , el _
The operation of the Genera.tive—Exam System is described in
detail in one document (l) s and the development a.nd eva.lua.tions of the
system are described in detail in another (2). Some of the ‘m_a,j-or_.

‘aspects of this project are outlined below.

.5.2. . .System organization
The exam system differentia.tes between two vkinds' of—-users - N o
_ student a.nd instructor. An instructor has access to bot‘n student a.nd R

instructor options s while all other users have access to the student R

'options only ) | S o -
Figure l is e block diagram of the ma:jor components of the

Generative,_,mam System. A1l users enter the system through\the Monitor, R

68

o .—;.' v '. . -63- N







-
3

— - M‘?f‘itbr'j’##"'

' ' e e ——— L] e .{ T - "-—1_  

noq . : Student N Exem ! ' Exem 0 Exam
tics ! Records L Adminis- | Spees | - Writing
— 7 (scores) | = tration }~—'— o ‘
o :
— 'a— —— a— omm —.JI
. ' |
|
_____ I
1 1
Student | i
Exams L |

details of , ) I

)

o
~—==== (all

)

|

the work) | . ‘
 the work) ] e o2 L

F PG/G 3 J

Figure 1: Block Diagram of the Major Components of

the Generative Exam System

6l




S

v_and on initial entry are allocated a record in'the Student‘Records aateg"'“

~base and a permenent storage area for their work in the: Student Exams

data area. Instructors write exams in the Exam Writing section by
writing’problem specifications for each desired problem generator/grader
(pg/g), This'set of problem specificetions,is’assenhiealinto an exam .
specification and stored in the Exam Specsbdata’area. When a student
takes an exam (in the Exem Administration‘sectionj, the appropriate exam
specification is transferred from the Exam Specs data base to the |
student 8 permanent storage area in the Student Exams data base.  The

same area is used to record his work as he changes from problem to
problem. Instructors may review exam results in the Exam Statistics

PP

gse~tic . «

. The heart of the system is the set of pg/g modules which
produce examination problems. Each pg/g is an independent mouule which'_
handles all aspects of one problem except data storage. These functions
of a pg/g include guiding an instructor through the process of writing
problem specifications, generating problems (under the constraints of the
problem specifications), administering problems to students, and reviewing
problems with students after their exam.

Since each student's probleﬁs are generated as he takes his
exam, there is no pre-test security problem. The generation schemes
used by the problem generator/graders are iesigned”to operate under
time and storege space'constreints so that delays and distractions to
the student are avoided. ‘The generation schemes produce a large number '
of similar problems by randomly generating numbers and character strings'
and assenbling problen pieces ;nto complete problem structures. Some
pg/g’s have the capabillty of generating problems at different specified
1eve1s of difficulty in their subject areas.

o . -65-

B P S U PATE SN AP VPV S



_. The problem' generator /graders -employ grading schéuies \wlh'i‘ch

'award credit for partially correct responses by éheckin?g.reapoﬁééé‘for

variants of the correct answer or by grading' the correctness or one
resp‘ohse’ on the assumption that the previous response in that problem
is cofrect. An example of the fomer grading sche;ne is found’iﬁ_,the
FORTRAN expressions pg/g.‘ If the cdrrect answer to an w:prebsioﬂ ‘Vere
"-hé. 0", the pg/g would award partial credit for the responses "'55.0", |

"45", or "-U5", The DO-loop pg/g uses the second grading scheme mentioned

above. The response given by a student for each iteration of the DO-lood

is compared to the correct answer for that iteration and to the answer
calculated from. the student's previous response., Full credit. is ewarded

if the response agrees with either a.nsizer.

5.3. Experimental results

Two experiments were conducted to evaluate the Generativ Exam

System. In each experiment, subjects were administered an exam on

‘PIATO and a written exam. The coefﬁcﬂ.énts for the PLATO exam scores

correlated with the written exam scores averaged .64 in one experiment
and .60 in the othér. | Ass@ng that the written exams gave valid
measurements of each student'g kncwledge, these resglts suggest that
exams in the Generative Exam System are as eﬂ'ecti‘;: at evaluating
students as written exams.

,,,,,,,,,, The experiments also studieq the tailored style exm:l.nation;
In a tailored exam, the difficulty levels of the problems are altered as
the student works through ‘the exam in an attempt to match the problem
difficulty le.el to the student's level of knowledge. This approach .
should more ancurately measure the extent of a student's knowledge and

’

make this measurement in less time and with less frustration to the student

«b66=
..



‘ ‘than the tradition style examination.

, <;wdin criterion-referenced grading eituat'ons sueh ae self-parea courses.

# A tailored exam Wbulh be useful 7ﬂ

, j In the expe'iments conducted to evaluate the Generative Exam

fj?System, some’ subJects ook tailored PLATO exama and other subJects took

',regular PLATO exams. (Regular ELATO exams are very eimilar to written n

exams. ) The coefficients for the PLATO exam scoree correlated with the)!:;7i“

written exam scores were higher for the group of subjects who took

| tailored exams than any other. PLATO exam group KE 83 for the tailored

subjects versus an aVerage of .59 for the subJecte who took regular
exams in one experiment, and .68 for the tailored subjecta vereus an
average of .53 for the subjects who took regular’ exams in the other
experiment). These results indicate that the tailored exam idea is
at least as effective in evaluating students as regular st&le exams.
However the implementation of the tailored exam in the Generative Exam
System was inefficient in terms of time (tailored subjects spent an
average of 40.32 minutes on their exam as opposed to an average of
31.78 minutes for the other subjects) and was unpopular‘(aa indicated
by questionnaire results). Improvements to the Generative Exam System
which could make tailoring more efficient and less unpopular have been
planned. :

The studies couducted with the Generative Exam System suggest
that interactive‘exgmamare useful and effective in evaluating students

and merit continved research, especially in the areas of problem

generation and grading and tailored exams.

]
5.4, The quiz system

In an effort related to the exam system, & special quiz system

has been developed which enebles urenentation of a criterion-referenced
67
72"



v-'."quiz following a PLATO canputer science 1esson. Designed end mplcmented

: 'vby R. I. Anderson from a concept proposed by R. G. Monta.nelli, _the system
1s intended 1) to provide a student taking a PIATO comp\rter science lesson
with both a means to assess how well he or she learned the mater:lal that
the 1essoxf is intended to cover and a tool to aid in learning t!‘xetopic

at hand, and 2) to provide members of the ACSES staff with a meens to
assess how effective and thorough & PLATO computer 'science 1esson is at
teaching its topic.

5.4.1, Quiz system operation

The system consists of a quiz system monitor and a pool of

PIATO quizzes available for admin:lstre.tion to students at the. conclusions
of individual computer science lessons. Each quiz ha.s been designed to
pertain to some well-defined topic within the canputer science field,.
and each quiz question has been selected by the quiz a,uthor to test
pertinent details of the topic's content. Incorpore.ted 1nto each quiz
is a data collection facility to recond st}tdents question responses.
Access to the pool of quizzes 1; provided, via the quigz system
monitor, to instructors who wish to use the quiz system. The sjrstem
monitor allows such instructors to selecf & quiz of the desired content
area, interactively design the quiz to best suit the particular lesson's
needs, view the quiz exsctl& a8 & student will, ard finally "attach" the.
quiz to the chosen instructional lesson. This latter task requires minor
changes be made to the code of the instructional lesson to ensble an
? aterface with the quiz. These changes are clearly outlined to the

user when quiz attacument is arranged.

73

«(8-



Figure 2 illustrates how the instructional lesson/quiz interface
operates. At the time a quiz is to be administered to a student, control
is transferred from the instructional lésson to a quiz system progfﬁm
that functions as a link to the quiz (arrow A). This program determines
which quiz of those available in the system 1s'to be presented for this
particular instructional lesson, and control is trangferred to it (arrow B).

Interaction between the system'progrﬁm and the lesson that

' produces the quiz occurs‘at various points  during quiz administration
(arrow C). Since all quizzes are designed with a similar structure, most
aspects of student-quiz interaction are uniform across quizzes.. The basic
sequence is as follows:

1) Once the quiz system program verifies the existence of a quiz
for a particular instructional lesson, a page detalling the
quiz's purpose is presented to the student.

2) Quiz questions are then administered; questions may e sklwmed

| if the student so desires, aﬁd all questions may '.¢ recnsw-red
in case an error was made.

3) When the student decides that his or her attempt 4% ire ..z
is complete, he or she may advance to the presentar::. of the
corrected quiz, which is accompanied by clarifying explanat.ons.

4) Lastly, the student is informed of his or her final quiz scores
as well as the average score received by others in his or her
course.

Following c review of the corrected quliz, a student is returned to the
system program & inel tiwe {arrow D) where return to the appropriate

instructional lesson it provided (arrow E).

. 74

-69-




QUIZ

INSTRUCTIONAL
LESSON

QUIZ. ' .
SYSTEM B |
PROGRAM = i ,

P
L @Iz
—E_’/
} QUIz

QIZ

ot B . cm————

Figure 2: Simplified View of Interadtions
During Quiz Administration

~70-




Once & quiz has been attachéd to an instructionalvlessén;>
each student taking that lesson will also take the quiz, and be informed
of tﬂé'average score obtained on the q]iz by other members of his or her
course. Each instructor will have access, uia the quiz system monitor,
‘to data that is accumulated for each quiz question and will be informed
of both the average quiz scores and the average amount of time needed for
taking the quiz for all courses that have used the associated 1esson.
Fach authorized ACSES steff member will also have access to the data
accumulated for each quiz question, to facilitate analysis of the.
effectiveness and completeness of both the instructional 1esson and the
qpiz. | |

When course instruction is completéd, instructors detach the
quizzgs_from the associated lessons. This procedure; which can be accomplished
through the quiz system.monitor, clears the accumulated course data. During
the time that a quiz is detached from an instructional 1esson, no reversal
of the quiz-accomodating lesson alterations mede earlier are necegsary?
7ansfer of control to the quiz system program to administer the quiz
(arroﬁ A of figure 2) will simply result in the display of the message:
"No Quiz currently exists for this lesson". Control is then immediately
returned to the instructionsl lesson (arrow E).

5.4.2, Past experience and current status

Currently, only quizzes pertaining to selected topics of the
FORTRAN programming language have been implemented. As the first quizzes
of the system, these were all designed and developed from objectives used
to develop the existing FORTRAN instructional lessons; thus instructors

had very little opportunity to manipulate the quiz design to satisfy other




- lessons' needs. - More q,ﬁizzes are being developed, howeve_f,,_g.ndil‘efxi_stihg
' quizzes are continually being improved. The availsbility of ‘a quiz that
sults .a. user’s lesson's needs may be 1nvesti‘ga.te':d via en_ffa.nce into th'e
quiz sysfem monitor. |
| The initiel trial of the quiz system occurred during the fall
semester of 1975, when a FORTRAN character manipulation qui; was presgnted.
following an Epstructiona.l less;; on the same topic.l Quiz question
responses ac*izaagulated from students in an intfoduc,tory computer science
course clearly indicated various deficiencies within the inat:"ucti_onai _
lesson and even revesled en instructional error. The lesson was thus |
restructured, the diséévefed error was correct‘ed., and the identified
deficiencies were eliminated. ' |
Subsequent use of the qui'z' system occurred during both the
spring semester and the summer session of 1976. FourL quizzes were présented
following appropriate instructional lessons to'studentsﬁ in four aifferent
introductory computer science courses. Preliminary analysis of data
accumulated by these sdministrations indicated shortcomings both :Ln

instructionel lessons and in quizzes. Corrective action is curréntly

underwﬁy.

References

(1] whitlock, Lawrence R. Documentation on the generative exam system.
Unpublished memo, Department of Computer Science, University of
I1linois at Urbena-Chempaign, June 22, 1976. , , “powr

(2] whitlock, Lewrence R. Interactive test construction and administration
in the generative exam system.. Report UIUCDCS-R-76-821, Department
of Computer Science, University of Illinois at Urbana-Champaign,:
September 1976.

(3] Anderson, Richard I. User's manual and guide to the ACSES quiz system.
Technical Report, Department of Computer Science, University of Illinois
at Urbana-Champaign, September 1976.

-T2-

ERIC. C TR




[ peT

6. Autometic judging of studentgprograms (R. L. Danielson, P. Mateti,
W. D. Gillett) s .

‘‘‘‘‘ : An automated system for instruction should be capable of
making judgements and profiding comments on.student programs, analogous
to the role played by teaching assistants and graders in the more
traditional means of instruction. Our efforts to provide this capebility

xxhave resulted in two lessons which ask the student to'wsite fairly
sophisticated programs and attempt to judge these programs interactively
with respect to both correctness and good design, and a categorization

. of anomelies in beginning students'’ programs.whichare.detectable'by

automatic analysis routines. | |

A progrem by R. Danielson exposes'students to a dynamic
example of the top-down programming process by monitoring their attempts
to write a PL/I program for symbolic differentiation of a polynomial.
PATTIE (Programmed Aid for Teaching Topﬁdown programming by Interactive
Example), mimics the action of a human tutor, in that she engages the
student in an interactive rialog, Juaging the correctness of student-
suggested refinements and providing hints and comments where necessary.
The tutor uses an AND-OR graph as & model of the’stepwise refinement
process, which student and tutor traverse together in the course of
program development. Danieison (1975a, b) discuss this tutor in detail.

The other lesson is a sorting laboratory and progrem verification
system developed by P. Mateti. This system allows the student to write
an arbitrary in-place sorting prosvem in a programming language with
specially designed sorting primitives. A special interpreter then
provides a dynamic display of the status of the array and indices during

execution. In addition, the student may provide assertions about the

,;state of the keys in the array, and the truth or falsity of these




| ‘éssertions is indicated during execution. The student may‘sup@;t;

éémpleted.piograms to the pr&gfaﬁ verification roufines, whiqh useA
the inductive'asse;tion method to pqué the progrem correct, or prove
it incorrect and ponide a counterexample. . A spec%al tﬁeorem prover,.
vwhich i3 highly efficient in this restricted domain, is the heart‘bf
the system. A full description is in Mateti (1976). |
Finally, a study is being conducted by W. Gillett aimed-ﬁt.
Aetermining and categorizing various legal programming constructs whose
presence‘in a program probebly indicates a lack of understanding by a
student (e.g., B**;/Q, vhich is equivalent to B/2). The idea is to
determine techniques by which such errors may be detected; the general
approach is to use iterative analysis methods on a flow grqph'eqnivglentﬂ
to the student's Fortran source program. An automatic program_containing”
such techniques, while being unable to direct the student towarad correctly
developing a program because it isn't aware of the algorithm being
implemented, would still be able to provide incisive comments on improving
program efficiency, correctness, and understandability. |
The following subsections provide a more detailed discussion

of these three efforts.

6.1. PATTIE

' Top-down programming provides a means for the programmer
to restrict the scope of the ..« ..lem he must solve to a manaéedble
level. The principal aid in this r<striction of scope is the use of
levels of abstraction. BSuccessive refinement begins with an abstract
deseription of the task to be accomplished. This task is then refined,
that is, described as a sericva of slightly more specific tasks which,

-Th- '

79



’7%1'3.“when combined, solve the problem. Eachfof these tashs’at‘this~5econd

‘level is refined in turn, producing .a third level of task descriptions, -
'and the process continues until tasks have been described in sufficient;ﬁ“
detail to be easily translated into programming language statements. )
.Task descriptions commonly employ a mixture of natural language and
-programming language statements, which allows much of the complexity

of the programming language to be ignored until needed. The successive.;
levels‘of task‘descriptions allow the programmer to concentrate most -
of his attention on the task he is currently refining, and‘yet be sure
of the proper integration of that task with the whole solution.

There must be three separate aspects of a system designed to
tutor a student about top-down programming. First, because the tutor
must monitor the process of developing a program, it is necessary to
provide a representation for acceptablevmethods of solving a problem,
as well as acceptable completed solution prograems. Second, because
we want the student to learn something about the technique of_the
topedown programming, the tutor must have some instructional streategy
to aid this learning, and use thils strategy in interaoting with the
student. Finally, the importance of natural language to the successive
refinement process requires the tutor possess some naturasl language
capabllity sufficient to understand suggested refinements and allow them
to be related to the knowledge of acceptable solutions.

Let's look at each aspect in further detail.

6.1.1. Representation of knowledge

-Any sort of problem solving activity (such as programming)

involves reducing the original problem to one which is understood and

=T5=




can be solved, using some rules or problemn rednction operators. ?roblen .'
‘solving tutors for other subject areas (simple integration, logic theorems)
‘give the student a wide range of experience, and are’ capable of handling

a correspondingly wide range of both prestored and student-suggested
problems. To accomplish this, heuristic problem solving routines, with

capabilities gimilar to those of the students being tutored, are integral

parts of -the system. Such an approach is possible due to the qnantitative fu_i'

nature of the subject areas. Solving problems in integration or proving

simple logic theorems requires using only a small number of rules o .
applicable to meny problems. .

Unfortunately, in top-down programming there is no smallbset
of general rules which can be applied in many situw.tions. There is,
instead, a very large number of distinct refinements which are applicable
in only a small number of instances. This, coupled with the difficulty
of clearly establishing a new problem state following e reduction expressed
in natural language, led us to explicitly store knowledge about the exact
solutions to a particular problem, and change this knowledge to allow the
tutor to accommodate other problems. This leads to a need to represent
a top-down solution. ’ .

The traditional representacion for the stepwlse refinement
process is a tree. The root represents. the initial problem to be solved;
leaves represent statments in the target programaing languaga, end each -
intermediate node represents a subtask on one of the levels of abstraction.
Such a tree, however, represents only one solution; there are likely to
be many correct solutions to any particular problem. Hence,we declded

to represent the solution knowledge as an AND-OR grah.



The basic idea behind an AND-OR graph s reducing ‘a problem .l. -

_to a series of subproblems ’ :just as in stepwise refinement. In such

. a graph, each node represents a problem. Solving the problem represented

“by an AND node .can be accomplished by solving e:L'I. the subpro’blens | L
represented by the succesaor nodes. Solving the probleln represented by -

an OR ncde can be: e.ccomplished by solving ﬂ one of the subproblems

represented by the successor nodes. 'I'he solution to the initially given
problem’ (represented by the root ‘of thﬂ graph\ is successively reduced '
to the solution of sets of subproblems, some of which might 'be
immediately recognized as being solved (LEAF nodes), others of ;wh )
might need further reduction. Intuitively, an OR node c0rresponds~;¢ o:}"' L
a point in the developxhent of a solution where a 'choice mist ',be me.de'l
between several (equally correct) approa.ches. An AND node represent.sw?\- -
a point' st which refinement involves several tasks. which must all be
done to solve the problen. Figure 1 is a small portion of the AND-OR o
solution graph for the problem the tutor is currently using: developing
a program for the symbolic differentiation. of a polynomial.

-In order to use an AND-OR grrph as the ba.sis for a tutor of
snccessive vefinement, several features were added. As Figurel
shows, branches between nodes are tagged with Eh1glish phrases ("transition - -
phrases"”) which are nsua.lly descriptions of the “asks represented by the
node each branch leads to. Thus ’ nodes represent subproblems to be'
#rlved, and brances are tagged with English descriptions of the snb-_w
problems they lead to.' PATTIE uses these transition phrases to determine
the path the studentl is taking through the graph. Other branches (leading

to LEAF nodes) are tagged with PL/1 statements and represent the final






Y
' . solve

agsider genersl

consjdfr special " case . .
cpats .
. check if if feg, return aivide|T : Bivids
P2 contains i a saro . iato b o imgo 3
R pleces! parts
in 5
on ence
it ‘.’ [T
use af INDEX ' assi
. simplify
fundtion . u |||n sep 2 azpign arts and i
%;\ IF ptatenent fefficient Jra ansver
pagl .
IF
ERRO ' ” » save glece
ae, - - between fhe sa{s both [\
Sagsign the index of - exjonent and
declaje & Z D2 : ;:efﬁc res} of string
vaxiaple
/ ' NDXZ: RETURA(*0' )5 . .
: ! : [
You will vant -
to save this DCL | HDXZ HDXZ=
value =hs HDEX{T,2);

O

ERIC

Aruitoxt provided by Eic:



step in refinement of a pérticular task, namely translation into the
target programming lanéuage. ‘

The remaining features added to the basic AND-OR graph
formalism are special branch or node types. Special ERROR branches
allow the problem expert who develops the graph to brovide specific
hints to be given to the student only in certain contexts. These

‘\“E\anm-mmm elther AND or OR nodes, and lead to LEAF
nodes which have error messages attached. ERROR branches tagged with
transition phrases ("expected" ERROR branches) cofrespond to bad
‘approaches the problem expert felt students were likely to attempt at
that point, and the error message can explaiﬁ why that approach is not
good. Untagged ("universyl") ERROR branches lead ﬁo error messages
vwhich simply suggest explicit actions which are probably needed at that
point.

A second special branch type was needed to hendle the common
practice in top-down program development of intermixing partial programming
language statements with English descriptions of refinements. This branch

"type may be tagged witﬁ PL/1 statements and marked so as to be displayed
as soon as the node is encountered, but not traversed.

The final special feature is the FROC node, which allows
invocation of a subroutine before it is programmed in detail. When
e countered in the refinement of one procedure, the PRoc_node acts like
a TEAF, but also causes the interaction control program to stack the PROC

s the root of thé'new procedure's subgraph, for later detailed development.




6.1.2. Student-tutor interaction

In relation .o the AND-OR graph, the successive refinement
process corresponds to tracing a path througn the graph from & root
to some subset of the LEAF nodes which represent a .solution program.
The exact path taken is determined by suggested refinements input by
the student. At any given time, the student is ‘actively refining only
one task, the "current task."” This current task is represented in the
refinement graph by a single node, which PATTIE determines the ~orrect-
ness of student-suggested refinements by matching them against branches
"in the graph at and below the current node. Once the student has
described all the actions needed to refine the c;urrent task, ‘a new
current task is selected by simply traversing one of tﬁe described
branches ﬁom the current node to a new current node. The order in
which these branches are traversed is determined by the controi program
using a depth-first traversal allv(ithm.
The means by which PATTIE\may ’nteract with the student is
the display screen of the PLATO IV terminal. Figure2 is a copy of
the screen as the student sees it. The\\upper 20 lines are the "program
area" and. contain the developing solutio\im\ program. The lower vart of
the screen is the "scra.tchpad,".the area v;h\ere the dialog is conducted.
On the left-hand side of the prog;*gm area are a series of
"task names" indicating the relationship of ;b,ch task to others in the
sclution, exactly as the relationships b_etween‘.\e\:\ections of this thesis
are described by the section numbers. Task name\\é\ are assigned when the
refinement task is initially described, based on the task name of the
current node and the current node type. Each refinement at an AND node

receives & task name composed of the task name of the\\AND and a suffix

-

ane o
80 -
0=
,

t . 86 L



DIFTERM: PROC(T,2);
' DCL(T,2,BFOR ) CHAR;
1.1 DCL (NDX2,LSTAR ) FIXED,

NOXZ «INDEX(T,2) )
‘.2 IF m -'

THEN RETURN('2')
2.1.2 BFOR «SUBSTR(T,NDXZ +2) 4
2.2.2 LSTRR «INDEX(SUBSTR(T,NDXZ +3) ,°'s');
2.3 separate the exp from the rest of the.r ..

1 IF LSTAR «8 .

.2 THEN exp ~ is the rest of the string

ELSE

2.4 ~ simplify the parts and returr the answer
'- END DIFTERM; : ’

[now refining task 2.3 ]
What else must be done to refine the current task?
. » . -

HELP raw avasluvie 1 f warted

Figure 2 The student's s:reen display

o e




indicating the nw»her of the branch matched by the refinement. At OR
nodss, on the other hand, tne task name of the refinement is simply that
of the OR itself, since only one branch leaning the node is ever traversed.
These task names indicate the relationship between tacks described in
the successive refinement process.

‘Ifﬁin the program area there are three distinet subareas.
At the very top are programming language statements, corresponding to
refinements which had been described well enough to be tranazlated and
displayed as code by PATTIE. Immediately below these_is the natural -
language description of the current task. Finally, at the very bottom
of the program area are other tasks awaiting fufther refinemer.c. This
is essentially a stack of refinements described at AND nodes during
solution development, but whose corresponding branches have nnt yet been
traversed by the control program. These refinements provide = cont :t
in which the student can devise his refinements for the current task,
but they needn't yet be considered in detail. |

The scratchpad area is where PATTIE accepis student inpﬁts,
displaés hints, or reveais thsmanticipated refinements once available @
hints have been exhausted. This interaction goes on (solely in t .2
scratchpad area) until a cdprect.refinement for the current nbde is
input by the student. At this point, the refinement task description
is moved to the program afea, the exact location depending on the
current node type.

| If that current nods is an OR, the student only needs to

input a single refinement which matches one of the branches leaving
the node, and the control program's actions are correspondingly simple.
It simply determines Whlch branch leaving the node is matched by the

suudent input, replaces the current task descrintion on the screern with

..........



the suggested refinement, and traverses the matched branch to a new
current node. |

AND nodes, on tke other ,hanl, correspond to points in the
solution process where refining a task requires describing several:
seperate subta.sks. As each refinement is accepted, its -description
is moved to the progrem area stack. When all needed fefinements have
been described, the current node “is pushed on a stack of active AND
nodes (i.e., nodes with all necessa.ry refinements described, but at
least one branch leaving the node untraversed), the top refinement
description on the program aree stack is moved up to ‘become the new
current task, and the leftmost branch from the node :is traversed. This-

corresponds to a depth-first traversed of a part‘cular path through the

solution graph.

Of course, an essential part of the tutorial process is
providing hints to the student when he makes & mistake. There are
several levels of prompts coded into the dialog routines whieh

provide slight hints to the student. These are dependent on the

current node type and may be superseded by more explicit hints contained

in the solution graph, if such are available. Sueh specific hints may
be provided by the problem expert who develops the gra.ph'by means of
MOR branches. If an expected ERROR branch leaves a given node, tlie
error message the branch leads to will be displayed only if a student
input matches the a.tta.ched transition phrase when that node is the
current node. ERROR branches are not examined during the looka.hea.d
matching process, to avoid potentially misleading_ hints. If the bra.x:‘l:eh

is a universal ERROR branch, the error message is displayed in respons.'é;\__

-83-



matching scheme. Au author specifies & vcs?bulary, consisting of 8

to the first wrong input received when that node is the current node,
and then the prompt sequence described sbove takes over.
Finally, the tutor contains a student model based on a l.st

of semantic concepts relative to prdblem solving and the subject area

of the particular problem. Each node and branch in the soluglgp graph

may be tagged with one of these concepts, and for each concept the

model keeps_track of the probability that the student will suggest

a correct refinement'at & point in the graph tagged with that concept.
This information can be used to provide additional hints to the student,
or ts modify the standard procedure of asking for suggestions and

immediately display one or more of the desired refinements.

6.1.3. Natural langusge capebility
An analysis of protocols between & human tutor and a student
over the :ume programming problem the tutor is concerned with indicated
two things:
(1) student utterances are.short, ungrammaticel, a:d relatively
isolated from each other;
(2) students use only a small number of patterns in thei:
utterances (both typed and verbal)
Ttem (1) ruled out the use of a linguistic-based understanding system,
and item (2) provided hope that the tutor could make do with the simple -----www o v
dialogiunderstanding systém provided by the PLATO,lV author language,
TUTOR. '{ |

Essentially, this facility is a keyword'recognition, pattern

number of disjoint classes of synonymous words (groups of “content"
words) and a ligt of words which are allowed in a student's inputs
T

",

8-
90+ B



but which carry no meaning ("ignoré.ble" words). Elements of a

synonym class may be single words or "phrases," which are a series
of two or more words which must appear contiguously. 'Phre.ses provide
a simple means of handling common idioms, and may consisf of lgnoreble
wo_rds N content woras appearing elsewhere in the vocabulary, or
completely new 'wordfs. |

TUTOR's facility attempts to a..ssign a meaning to typed
inruts by meatching the input against a séries of _s'tc;red‘patterns.' Each
pattern consists of represenfa.tives“’from"'onej'dr".rﬁoz‘e“ of ‘the classes o:f“
synonymous words in the vocabulary. Since there are usually meny ways
of expressing an idea in natural lenguage, ;lt is frequently necessary
to attach mor- than one keyword pattern to a singie "meaning list."
For example, since keywordﬁérder a.ixd number ofmkeywords are important
in a pattern match, if it was desired to assign the same meaning to the
inputs "a brown cat,” "a cat that is brown," end "a cat" (assuming "cat"

and "brown" are content words and other words are ignorsble), the meaning

n n 1

1ist must include the patterns "brown cat,” "cat brown," end "cat."

One of the biggest drawbacks of a synonym-class a.ppr.oa.ch such
as this is that a word can have several diffevent meenings in different
contexts. Since no word can be in two classes (except as pax"t of a

phrase), classes which.contain the same words must be coalesced. This

-

introduces-a-certain amount of ambiguity into the meaning attached to

some inputs. Fortunately, a node in the refinement graph provides a
well-defined contéxt vhich helps reduce this ambiguity caused by merged
classes. The most l_ikely student inputs at & node are exactly"i:ﬁose
vwhich correspond to tra.nslition phrases tagged to branches leaving that

node, or nodes slightly lower in the greph. Therefore, if an input -

- © -d5-

. L



matches one of these branches, there is a high probability thé.t_ the
intended meanings are the same.

After several improvement iterations, this é’itple scheme
allows the tutor to understand about 80% of student inputs using a

\

vocabulary of about 1500 words.

6.2. Sorting lab and verifier

There are & number of reasons for exposing beginning
programming students to the concepts of program correcfness. _ ,
In particular, the discipline of structured progrf.nming dépendé heavily .
on correctness proofs of program segments ’ and péfsona.l exberience -
i:ndica.tes inventing loop assertions for a program grea.tly'inéféé.ses the
programmer's understanding of his roizt",}nes; Uﬁforﬁgna.tely, féw b‘eginning
progremmers have the ability to carry out a corréctness prOpf of"‘l;heir :
program, which.suggests that a progré.m verifier woﬁld be a valuable ai_d
in teaching introductory programming. o

Many of the verifiers which have been written, however, require

intervention by the user to direct the activity of the viz;ifier;'.wﬁiéﬁ—
is not a.c'cepta.ble for beginning students. So it was .d’ecﬁzided ‘to develép
a program verifier which could verify simple programs without i‘.ntier-A
vention from the student. To a.ccbmplish ‘this, the part:lcula.r domain of

programs the verifier a.ccepts was limited to progréms for inpla.ée sorting

of the-elements of 'é:v.’c;x—l—e:-di.rnensional g.rray. This domain was chosen for
two reasons:

First, sorting programs dre among the most used éx.empl,es in
introductory progra.rmning courses, and second, every progrem verifier

constructéﬁpég far has verified several sorting progreams, which provides

a standard for cAompa.ring this verifier to previous work.

-86-




.

The verification system consists of three ms.;]or components: an
editor, an interpreter, and the program verifier. Let's consider each

of these in a little more detail.

6.2.1. The editor )
| The editor allows programs to be written in a progra.mning
lenguage with primitives especially designed for sorting (Figure 3). -
Ineplace sorting routines must conserve the keys they are sorting,
hence the language provides two primitive operations for moving keys
(ex dhﬂ and insert), and does not a.llow a.ssigmnent of values to the
keys of the array. Successor and predecessor ﬁmctions on the indices
of the array, as well as a special scan. sta.tement, provide sequential
access to the elements of the a.rrav. . The 1ang11ege also includes if,
vhile, and call statements. All procedures are a.llowed to be recursive.
The editor is designed to fa.cilita.te top-down program development. ‘
The program is internelly represented as a tree; deletion or insertion |
of a subtree between any two nodes is ,permitted at any time. l Also, the
editor insists that the student complete each statement before inserting
another (e.g., the endwhile of a while sta.tement must be properly inserted
before going on to other sta.tements). Finelly, since the language is
sui‘ficiently modest that nearly all its statements may be recognized by
the first character, the editor completes program statements as soon as
the statement type is recoguizei, allcwing the prngrammer to ~oncentrate
on the proyram bcing developed. |
The asrertion language provides two predicates concerned with
arrays, namely sorted (s ,t) and array(s,t). Their rnea.nings are sorted
(s,8) = if s cr < 5t then x(1) < x(3); arrey (s,t) < array (u,v)
‘> if s < it anduci < v then x(1) < x(J). .The la.n'guage also -

contains predicates ((,, '-, >, < >) for: rela.ting indices of the arrsy.




<ptr >e<ptr>{ +1)

exchange < key > with < key >
igéggg < key > below <« key >
vhile < boolexp > do |

endwhile

if < boolexp > then
else

endif

scan ¢ up Y with < pfr > from < exp > to < exp >
down)

endscan

procedure < name >

call < name >

Figure 3: Programming langvage statements

94’

-88-



An assertion is then a sentence composed of these tasic predicates and
the connectives and and or. Notice that it is possible to express the

negation of a pointer predicate in the language, but not an array predicate

(i.e., sorted or array). The student is required to provide an assertion
statement ‘for each loop in the pfogram: a loop body exit assertion

(BEXIT) and a loop exit assertion (FEXTT)i Examples of such assertions

are in Figure l. .)//////f/

6.2.2. The interpreter

The interpreter is capable of executing any program written
in the programming_lgnguage. During execution, the status of the array

being sorted is dynamically displayed, along with the location of the

various indexing pointers  (Figure é)jmméﬁii'the currently active
prbcedure is displayed; as each new précedure is entered, that prbcedure
is disb;ayed alohg with the diagram of the array segment and a stack of
procedure names giving an invocation trace. Both assertién lanéuage
and programming language statements are executed, and the truth or

falsity of the assertion language statements is indicated.

6.2.3. The verifier

Because this verifier is only concerned with a limited domain,
it is faster than other proéram verifiers in existence. There are two
reasons for this: first, since it is impossible for the program to destroy
keys, the verifier only needs to prove the keys are sorted; second, because
of the specific domain, the verifier has been design;ﬁ to prove theorems

which occur frequently very quickly, while perhaps taking longer then

E)Ei”',

-89- ;



1 procedure sort (n)

2 1SN & xB $ ACIIND $ xXN+1

2  scan - down with i from n to 2 -

3 scan up with j from 1 to i-1

4 if xj > xj+! then

5 exchange xj with xj+1

6 else - .

7 erdif ' B ' P S
* 1 £ UK TSN&AMY) € xa+1 & aC13) € s(T+13N)
) endscary |

% 1 ¢T < N&AC(T-1) < s(TiN) T

>} endscan
% SC13N)
18 endproc

»>> what next? <<«

Figure 4: Sample sorting program

-90-







procedure aont "
1$N&>a$n(1m)$mo1"
‘scan down with i’ fron\ntoz
scan ‘up with j -from-1 to i-1
if xj > xj+l'then , :
exchange xj wzth x]+l B
else’
endzf e
1.6 9« T <N & 9(134) S xa+1

6 |11 f—i

*o.'*oo*uosn&w_n&-»

'3 2 endscan
' 1 <TsS N A(1;:-1) < s(I,N)
endscan
2 |4 s(1 ,N).

18 endproc . T

r3i executing 7% 3

- array display gn ' exécution ‘can be'pesumed

- Figure 5: Sample executipn display
Lo : | o sgle

:{", ;A ~ ) .‘ @

L= e "j‘:' ¢




. usual to'prove ‘less typical theorems. _ |
_ The verifier is canpcsed of three distinct subsections. - The :
~ first of these » the verification condition generator, is responsible
for creating theorems to be proven from the student's assertions. For
each loop in the program, ‘two theorems are: generated as follows - A

" loop. body entry assertion (BENTRY) is generated from the body exit 4

assertion (B \ by backward substitution. Now, assuming c stands

for the loop condition, we must prove the two lemmas

\1) BEXI'I' and C _ir_nplies BENTRY _ *

(2) BEXIT and = C _:L_mL I‘EXIT(the loop exit assertion)

" Beginning with the bottommost and innermost 1oop, and working outward,
such lemmas are generated for the whole program. 'I'hese are then passed
to the second section of the verifier, the theorem prover, which proves
or disproves all lemmas for the program. The third section is a counter
example generator , which will provide the student with counter exqmples

f°1' any false lemms.s. o e

s “h"" .

Note that the theorem prover is the subsection which is :

specialized for sorting programs, the lemma generator is a completely

..... general routine.. Also note. thet. the veririer will w_ax terminate, and .

indicate whether the prog‘iagn,,is" correct or incorrect with respect to the

/”...‘ .
'given assertions,,-/ o

e
-
s
',,e"' 5
L c) . S P

6 2.’4 Performence of the system ‘

o ~---—The editor- and—interpreter alone provides 8 hxguy instructive—-

\ sorting lsbora.tory which has been well received by students who ave

L tested portions of the system. The verifier alone, for those programs




with which it has been tested, hgs proven to be the fastést syétem.
known. (it must be noted, howeier, that other verifiers can handle
relatively arbitrary programs, while ours is limited in its domain).

A typical'bubblebsort routine, for examplé, requires nine CPU-seconds
to verify. Unfortunately, this may fequire as long as 30 clock-minutes

during periods of heavy system ioad, which severely haupers its usefulness

for instruction.

6.3. Program anomalies detectable by an automated giipem
Beginning programming stu@ea%s learning fheir first programming
language normally have a very "narrow" viewvof;the problem solving process.
They learn the function of each cf the individual Btatements.in the
particular language but are not familiar with all the language features
'and lack the insight to select the most gppropriate language constructs
for a particular problem they mst solvet |
Among some of the feasons why this occurs are:
- Lack of experience, |
- Teach;ng technique,
- Lack of desire to expand their own programming sbility (usually
c;used by lack of interest), and
" = Misunderstandings or misconceptions.
Because studénts:
- Start éédipg before they understand all aspects of the problem.
- Program pieéemeal and add "fixes" to patch up incomplete algorithms
instead of restructuring or chénging~the basic aléorithm, and
- View their program as a series of essentially:uhconnected
statements without reflecting on more global aspects of their 7 -

program



"Poorly structured" programs are often produced. Here, "poorly
structured" refers not only to control flow but also to inefficient,
ineffective, or erroneous data flow.
An automated system capable of performing the global flow
analysis thut the student fails to do is clearly appropriate. Such a
system capasble of: o - T
- Detecting program anomalies,
- Giving detailed information about the anomalies, i.e.,
helping the student understend what is wrong, and
- Helping direct the student in correcting the anomalies would

be & valuasble pedagogical tool.

6.3.1. Data collection

A set of four machine problems given as assignments in a

beginning programming course of approximately 60 students has been
collected. The course used-Fortran as an implementatlion language and
was directed toward Engineering students. The final solutions (those
handed in for grading) are currently being hand analyzed for progr&m
'"defects" dealing with:

- Programming style,

- Efficiency, and

- Language and algorithm misconceptions.

A report presenting:

A categorization of these "defects",’

Reasons why students produce such "defects",

Statistics on "defect" freqﬁently, and

Which "defeets" are automatically detectable
will be completed within a few months.

-9l



6. .3.:2. Techniques

-’ The thesis involves the use of global flow anaJ.ysis }
| techniques (both currently existing and newly developed). to detecf '
anomalies in frograms. |
) | A flow graph corresponding to the student's source program
is produced. 5 This flow g"aph is then uaed by iterative techn:lques e,
similar to those developed by Kildal {"A unified ap'proaeh to global
program optimization", SIGACT SIPIAN pp. 194-206, Oct. 1973] to
perform each of the specifie global flow analyses.

A uniform iterative global flow framework has been developed

which encompasses nost of the "standard” _(i’.‘e.” :'iin variables s
common subexpression elimination, doninance. ete.) and newly developed
(i.e., unreferenced data, unititialized variable, transfer variable,
etc.) analyses. Since these techniques do not involve "interval"

analyses, the underlying program flow graph need not be reduclble.

6.3.3. Specific program ancmalies

This section presents examples of some of the anomalies to
be detected. Fach can be detected. by -the techniques.nientioned in
section 3 without any knowledge of the user algorithm belng implemented.‘
Figure 6 is a subroutine implementing the binary chop method
of root finding and will be used to present specific examples of a.nemalies
to be detected. This is the type of code many beginning Fortran

programmers produee as a final product (i.e., turned in to be graded).



L3
1h
L5
L7

' 19

Lo

L13
L1k
115
116
L17
118
L19
120
121

SUBROUTINE BINCHP(XL,XR,EPS,DELTA,ROOT)
YL = F(XL)
YR = F(XR)
IF(YL*YR.GT.O0) GOTO 10

20 ITER = O _
m(ABs(m-n.) LE.EPS) GOTO 30

= (XI+XR) /f2. ‘

YM F(XM)
ITER = ITER + 1
DELTA = ABS(XR-XL) /2.
PRINT, ITER,XM,DELTA
II'(YL*YM.LT o.) GOTO L0
XL = XM .
YL = YM
GOTO 20

L0 XR = XM

m=1M v’
GOTO 20

30 ROOT = XM

10 RETURN
END

Figure 6: Binary chop routine

‘&102



6.3.3.1., Uhreferenced dste
Unreferenced da.ta.z occurs when: ’
.= A valué, D, is assigned to a vé.riable, V, and ]
- That value is not refereq_ced by any stgteﬁent <;f the
progrﬁ.m. -
This can happen in a combina.tio;x of a;wa.ys‘:
1) vVarisble V 18 assigned a new velue prior to a

reference, or
2) The varisble V is never referenced, i.e., an-"exi "
is e;;countered ﬁrior to a reference.

Example:

At L17 of Figure 6,’ a specific value is assigned to 'YR'.

However, there is no ancestor of L17 which references 'YR'.

6.3.3.2. Uninitialized varisble

A varisble, V, referenced at a specific sta.femenf s S, may be:
- Totally uninitielized | |
i.e., no execution path from the beginnin‘g of the. prdgra.m tb
S assigns a value of V, or |
- Partially ininitialized
i.e., there is at least one execution path from the beginning

— of the program to S which does not assign a value of V.

Example of pai'tia.ily uninitialized varia.ble :v ,
Consider 'XM' referénced at 119. Assuming 'XL' and 'XR' -
are sufficiently closeiupon»en}try» to_thg_\syyrgg‘l?ine, i.e.,
ABS(XR-XL) <<EPS, then the flow of control might i';g .(L'.I.,Iz,
L3,1'.J+,Ii$,16,119,120). This execufiqn path leaves X'

| ﬁninitia.];ized lwi;en re_férenpeé a:bL19 a.nd, thus, an erroneous

root is returned. ‘ CoL
I R

AR




4

6.3.3.3. Code motion

Code motion can be suggested as & correction to certain
‘anomalies when the student asks for help. For instance, assume the
partially uninitialized 'XM' at L19 has been detected. The suggestion

to move L7 between LS and I6 can be sutomatically generated.. _

6.3.3.4. Transfer varieble

A veriable is a transfer variable if:
- The value of an e:ipression X is 'assigned to V, and
- At each referénce (normally only oﬁe) "to‘ Vv which contains
the value of X, the defining components of X have ﬁile same
value as when X was assigned.to v. L
The reason for;detecting such a situation is that the assignment
of X to V can be eliminated and the expression X substituted for
co?responding references to V. Although such a ‘suﬁstitution probably
13rod'uces a more efficient program, this is not the major reason for
bringing this to the student's attention. The primary motivation is to

help the student understand how data flows through his ‘progra.m}

Fxamples: , : o

1) 'F(XR)' assigned to 'YR' at L3 can be substituted for 'YR' |
_at 14 (thus, eliminating L3).
2) 'XM' assigned to 'ROOTT' at L1§ ~~n be substituted for
'ROOT' at Ll. This.eliminates L19 and since no explicit
. -action must be performed before returning, the 'GOTO 30’

at I6 can be repla.c'ed. by 'RETURN’.

104:

i
»

-8~ -



w

- ks il o

"'here are several situations which, even though detected,
should not be presented to the studeut. Two such’ situa.tions are: .
1) The tra.nsfer varia.ble is assigned» the value of a.n
o o ex'pression requiring computation (i.e. , not ;just the
o _ value of another va.ria.‘nle) _wtsige&e loop but is
referenced inside the' loop. Clearly, the vs.lue o“f
‘the expression 1s invariant to the loop and s computation

has been placed outside the loop for execution efficiency.

SN

' 2) The transfer varisble is assigned the value of an expression

requiring computation and is re__i’r-reﬁced more than once.
Thus the computation would no,ve to te.performed more than
once if a substitution were done. |

Eb:a.mple'
"F(XM)! assigned to 'YM' at 18 can be substituted for 'YM'
at le, 11k and L17. However, thislproduces two functional
evaiua.tions each time through the loop when oniy one 1s .

needed.

6.3.3.5. Initializstion inside loop -
" VWhen building an "IF" loop, the beginning student often places
the initia.‘!.iza.tion of the loop inside the loop. The.two concepts_ of
" code motion and transfer variable ca.n be used as'a-partial solution to
detect and correct this situation. )
Example:
As the subroutine is currently structured, 'ITER' at IS

......

105

o



L at I5 can be ‘s"\mstitupga for '"TTER' et 19). If L5 is
moved: out of the loop, say to I4.5, 'ITER' -is no longer
& transfer variable because the data referenced through
'TTER' a5 L9 now has two sources. D K
Thus, *f movement of the assigmment to é,‘ transfer variéble to -

a position outside the loop changes its status, it is a candidate for
a misplaced initialization.

—— . s

6.3.3.6. Common expression detection

Students often calculate expressions with exactly the same
‘va.lue several pleces in their program. Such duplications. cen be
automatically detected. The purpose of bringing this “to the 'studiént's
attention is not to produce more efficient code (since an optimizing
compiler will elimireste such redundant computations) but to help the . ._ T
 student b>tter understand how information flows through his program.
Example: | | |
The value of 'ABS(XR-XL)' computed at I is exactly-
the same as that computed at 110, A temporary varisble
‘can be ussd to transfer this value to tthe two places it

i's used.

6.3.3.7. 'GO'ing to a 'GOTO’

The 'GOTO' is standard tool used (especially in languages like
Fortran) to handle momenta.rily unresolved actions. When thesé actions are
finally resbived, the student fails to perform simple optimizations in

order _’_oo s_i_mplify the control structure and produce:-&a more understandable

P

-100-

L A
ta
G




._:progra'ih.- ‘A class of such "defects"i is the explicit transfer of contz;ol
to an unconditional transfer of cortrol. )

Example: I
The 'GOTO 10' at Ik can be replace by' 'RETURN'. Such a
form is inore easily understood 'ey someone reading the

program and better reflects the intended meaning.

6.3, 3.3. 8. Local veriable in a pareméter 1ist

Students will often place a local variable of the- subrout ine
in the parameter list. This can ‘often be automatically detected even if
the corresponding argumenf is actually manipulated in the .ca.lli'ng routine
(a.lfhough computations involving the argument are nbrma.lly%ompletel&
absent). . |
Example:
The variable 'DELTA' in the pa.ra.mete.r.list at L1 is probably
& local varisble. Since 'DELTA' is assigned prior to any

reference, it cannot be an input variatle. Ass

walue returned io the calling routise is never Y
(see section 6.3.3.1.), it carnot be an output
it can be concluded that 'DELTA' is a local variab

6.3.3.9. Modification of input para.meter v

It is gererally considered a poor programning practice to modify
an input parameter-in a subroutine (of course, a parameter may be used
for both input and output). Such a practice can cause erroneous results-

( if the corresponding argument is referenced expecting it to have its

-101- » SR




original value) or excess computatious to recalculate the ori_g:lnel value
.f the argument. | N ‘
Example: | :
'XL' and 'XR' in the parameter list st Ll are clea.rly
input pa.ra.meters 8ince they are referenced before they
are assigned. If the values netumed to the calling routine

‘are referenced, the ‘programmer may 1ncorrect1y a.ssume he

3

o .___f....._-,_..e s v ey e

is referencing the original input values. If the returned

E— e velues are never referenced (i'e. s the para.meters are not

H

output pa.re.meters) program a.nomalies mey occur when the

‘subroutine is used in a different environment. . o .

References CT T

[1] Danielson, R. and Nievergelt, J. (1975a). An eutometic tutor for-
introductory programming students. Proc. Fifth Symp. on Computer
Science Education, SIGCSE Bulletin; Vol. 7, No. 1, February 1975.

[2] Denielson, R. L. (1975b). PATTIE: An automated tutor for-top-
down programming. Report UTUCDCS-R-75-753 (Ph.D. Thesis), t
Department of Computer Science, University of I]_'Linois at Urbana- :
Champeign, October 1975.

[3] Gillett, W. D. (1976). An iterative program a.dv:lsing system. T
Proc. of SIGCSE-SIGCUE Joint Symp. on Computer Science Education, ‘
SIGCSE Bulletin, Vol. 8, No. 1, February 1976. ;.

[4] Gillett, W. D. (1977). Tterative techniques for detection of SR
program anomalies. Submitted to the Conf. on Principles of ,
Programming Languages, Los Angeles , California, Janua.ry 1977.

[5] Mateti, P. (1976). An automatic verifier for a class of sorting ~
programs. (Ph.D. Thesis), to appear as DCS Report, September 1976 -

108

-102-







L e~ g

'!hh mmch [lhb:l.q, 19761:] cp:l.or“ tva obaoctiw- spprouhu

) lmgme duign and .m.m then to an i.nvutipﬁon of conh'ol conltmctl
v & Mncctive couputtng, particularly in Mcr-udod nutr\wtion (cAI). -
"ﬂm&_tzwn_& 'Mwm'mosnm-th- 3

.mnmmmmmmatom.nmmmm N
r an eupirical investigation of unmc coutm W ctrofulu
:cmntod, thorough, and replicable upcrhontl, dumm cén mnnt
yjective ovidcnco to support claims about language futuru and ﬂyu.ltic
snsiderations. In & formal tmrmh to mwc dug.g, [} dnim
scognizes the theoretical foundations of programming languages and
ttempts to achieve an optimal design by a specification of the properties
£ language constructs in order to expose weaknesses, mmmmm,
nd design flaws. A better understanding of the syntax and semantics
£ language constructs can make it easier for a language designer to
bjectively see what festures are really desirable.

These approaches to language design are not only applicable

n an investigation of proposed language constructs but n.'l.no. in an
nvestigation of language design principles. Many lists of design
rrinciplu exist, but notions such as "simplicity” or "uniformity"
hat are generally included in these 1ists are insufficiently defined.
, formal definition of these principles would facilitate ddentification
nd consideration of langusge features that viohto basic design |
winciples. Moreover, experiments can be amhd‘in an 'lttupt to
bjectively validate design principlgl s0 “hat language designers
ian confidently apply them. 109

.m.



L J_\n&:;_o_-g e = . - o

As a means to explore experimental and fémﬂ.-hnguge \
design, D. W. Bnbleyhu aeu.gnoda mprognming hnguago ctuod
KAIL [Eubley, 1975al. KAII. was mginm,v notivated by a duiro to’
improve TUTOR [Shorwood, 1974], the suthor :I.nnguage ror the PIATO IV
'CAI system [Alpert and Bitzer, 1970). In KAIL, & u:l.ector conltruct _ _
(Embley and Hansen, 1976] 1s introduced to handle CAI answer dudging; v
this construct also unifies selection and 1touti.on and stbsumes nont |
typical high level langusge constructs (e.g., if-then-slse, while,
repest-until). PFigure 1 gives the essential syntax and oMicc of
the NAIL selector. A static exception processing lohqe. is also
introduced to handle frame sequencing. , ‘ ,
These KAIL control constructs were tostid in two experiments |
conducted on-1ine in & CAT environment, and the results indicate that
they are nkom to be poycholosicany sound. In an uporiment on the
KAIL selector [Exbley, 19750], subjects attempted to understand and
‘answer questions sbout two short programs. For ome group of subjects,
these programs were written in 8, a language containing the selector;
and for the other group, they were written in A, an ALGOL-like language.
In the other experiment on frame sequencing [Embley, 1976a], subjects
debugged and modified a substantial CAI lesson about 3500 lines in loncth,
One version, T, was written in a TUTOR-14ke language, and the other
version, K, was written in a KAIL~1like language.
These KAIL éontrol constructs were also examined through s formal
definition of their semantics, and their properties were clearly exposed.

«10be
ic | - 110




-
h K’l

conti‘oi
loop-control”

choices

_ semantics:

selector

- [ststemeﬁt-sequence control choices] .
[sts.tement-sequence loop-control choices]

- if expression ' ) R

-»ﬂi_]ﬁ expression

~until expression )

— | relation expression : statement-seqduence

- | relation expression : statement-sequence choices

The selector is executed, in5 steps'

1.

2.

3.

5

Execute fhe"initial sts.tement-sequence.

Evaluate the control-expression and save its value in a
temporary, te x

Test each choice in turn unti:l. a. selected choice is'-found

such that o
(t relation choice-expression)

yields true.

Execute the s‘be.tement sequence in the selected choice.

Execution now continues as follows: For if exit. For
vhile, if no selected choice is found, e T‘E’ othervise,
return to step 1. For until, if no selected cholee is
found, return to step 1; otherwise, exit.

: 111

Figure 1l: Essentials of the KAIL selector
{

. ~105-



| »An exiometic epproe.ch was epplied to the KAIL selector, and the KAIL o
‘ en:ception processing scheme we.s defined in terms of a, behe.viorel . o
: x'nodel. The TUTOR exception processing scheme wes elso formally |
defined and conpe.red with the KAIL scheme. |

T.3. Conclusions
" 7.3.1. Desi inci s b . R o
As a result of the investigation of experimente.l a.nd formal
approaches to lenguege design, three hesic design principles evolfved
1. Uniformity, By e
-2, Separability, and S c
3. Iocality.
These three principles are proposed as e‘ possible besis folr,en :!nfornel ‘
approach to language design. “ | LT -
The uniformity principle suggests the.t le.nguages ou.ght to
be designed with a one-to-one rele.tionship between syntex end sementics. |
In a progream written in a uniform le.nguege, a single semsntic notion
consistently ha.s the same synte.ctic form. Moreover, e sing1e rule
e.pplies to ee.ch lenguege construct independent of its context ‘Ina
"nonuniform ‘language, there are severe.l ways to express a single sementic
notion or various possible meanings for a synte.ctic form dependins on the
execution history, 80 & progre.mer has more to oons:l.der. Nonunlf.ormity
“ leads to more decisions and thus more probebility o:t‘ error.
The seps.rebility principle suggests that specie.‘l purpose
. composite structures may be ham:ul. , The. sdve.ntege oi‘ve composite
construct lies in its power to produce a desired effect with a minimal.

-106~

. o
‘ . L
3 | L . : . . . FERIE 1 5 P
. o ! . ! . 4 :
AP I N . RO DT S S €1 L e, N
A S SOOI S AR T RUOCHE S0 R A LI A T A

Y [ S P
SRR e e g



_ amount of code. Most high level language structures are cbmpo‘s:l,te‘

céhstructs; and so long &s no programmer needs an pnavailablé ‘component
of a compbéite' construct, all is well. In the unfortunate situation where
a needed compone_nt is unaveilable, the language ‘designer may be willing

to extend his language. If not, a programmer would have to obtain _the

compohent indirectly by "programmi_ng uround" the problem, if this is

possible; otherwise he would have to use a different language. To‘
supply syntactic forms for many composite structures would cause language
constructs to’faroliferate. To force the programmer to indirectly -geparate
composite structures, on the other hand, would result in code that 'is
more difficult to understand and meintain. Sepa.rability guggests that
a few general language constructs are better than many constructs that
have only specific utility and that caution should be exercised in the
creation »f special purpose constructs.

The locality principle suggests that language features should
be as permanent and local as possible. ILocality aids programmers because '
it structures information. When a programmer has a large amount of

information to consider, any mechanism that structures this ihfbrmation

or restricts it so only a small subset needs consideration is most

helpful. When a programming ia.ngua.ge encourages locality, it reduces

the amount of text a programmer must consider in order to determine the
;ffect of a language construct. Furthermore, it imposes a structure

on information accessing methods and restricts the variability of language
features whenever possible. lLocality also .fa.cilita.tes modularity and 1s

particularly valuable when a program must be modified.

In [Embley, 1976b] these principles are formally defined. Moreover,
the experiments conducted in this research lend support to these principles,
particularly thé sequencing experiment. |

=107
118



7.3.2. The experimental approach to languege design

The results of the selector experiment support the hypothesis
that programmers understand the KAIL selectof more easily than an
equivalent set of traditional constructs. S language subjects answered
more questions correctly than A languasge subjects .a.nd also thought they
1n1t1aily better understood the S-favored program. Statistics on the
nunber of questions initially answered correctly, average time taken fo
obtain a correct answer, and initial and final selr-eva.lﬁa.tions are all
in the direction of the S langtiag'e. No performance sta;bistics favor -
the A language. .

In the sequencing experiment, the results gene;'allx lend
support to all three basic design principles. In T, the‘b‘el.u'vior, of
& procedure is context dependent, but in K, the behavior is indequm,lent .
of context. T subjects introduced errors ‘due to this context dependency
when they improperly inserted new procedures. This lends suppc;;{: to
the uniformity principle. BSeveral observations support the separability
principle. T subjects had difficulty separating composite constructs ’
and in one instance, none of them were able to find a way to "program
around" a particular problem. The expgrimenf also supports the locality
principle because T subjects conéistently failed to reset,_global status. ..
information when they attempted to fix one of thg bugs. In K, this
information was local and c’é.used no particular problem.

The experimental approach to language design can produce
scientific evidence to support claims about lenguage features and design
isgues as shown in both experiments. Through empirical tutp , designers
can gain assurance that their language features are psychologically sound,
and they can gain confidence in language design principles.

114

. =108~




el
-

T.3.3. gzperinents in the PLATO environment
‘ ASince these experiments were conducted on PLATO, they also
11lustrate the applicability of an on-line methodology for conducting
experiments in programming. Seferal advantages. can be geined by
conducting experiments on-line in an interactive, CAI environment.
There can also be several disadvantages.
The advantages include:
1. A controlled teachi;g environment,
2. The ability to interact meaningfully with subjects
during an experiment,
3. Individualized sequencing,
4, fThe ability to gather highly precise data,
5. The ability to impose strict timing constraints,
6. Assistance in grading,
7. On-line editing capabilities, and
8. On-line execuéion capabilities.
' The disadvantages include:
1. Cost, '
2. 8System failures, and
3. Subject unfamiliarity with the system.
In general, the experiments profitably took adventage of the
PLATO environment. Time and space :limitations, however, prevented fﬁll..‘

exploitation of potential advantages. -




$

7.3.4. The formal approach to m& desiﬂ

An application of an exieme.tic fome.lism to the KAIL selector

helped clarify end concisely specify several generel obeerve.tions. The

- KAIL if a.nd case are semantically identical, and e.11 is comple:x compe.red

to the other control types. The forme.lism also revee.led simile.rities

‘and differences among if, while, d until, and 1ed to an investige.tion

of another possible control type.

The semantics of both KAIL and Tirron exception jhendling'ﬁere
defined in terms of a speclal purpose ebstre.ct ms.chine., This behavioral
definition shows that the KAIL constructs adhere to the locelity principle '
better than the.TUTOR constructs. Mereover, the i‘orme.lism shows v‘how the
TUTOR constructs violate both the uniformity and sepe.re.bility principles. |

) The formal approach to language design can ob;)ective]y reveel
properties of language fee.tures as shown in the forml definition of the
KAIL control constructs. It can also ob;]ectively expose weelmesses "and
inconsistencies and provide insight into why some lenguege fee.tures are

better than others.

b, Sumary

The results indicete thet further resea.rch in e:cperimentel |
and formal lenguege design is 1ike1y to be fruitful These methods can
be applied to obtain objective evidence to .support cleims e.bout lenguage
features and design iasues in general. It would be pe.rticulerly ve.lueble
to further apply these methods to obtain additione.l support for the
three basic design principles. These ceuld then be confident]y used
es a partial basis for reasoning about and designing progremming

language features in general.




References

[1] Alpert, D. and Bitzer, D. L. Advances in @omputer based education.
Science, 167, (20 March 1970), 1582-1590. -

‘[2] Embley, D. W. An experiment on a unified confrol construct. Technical
Report No. UIUCDCS-R-T75-T759, University of Illinois at Urbana- ‘
Champaign, Depertment of Compute: Science, August 1975b. ‘

[3) Embley, D. W. An experiment on CAI sequencing constructs. Technical
Report No. UTUCDCS-R-T6-TT1l, University of Illinois at Urbana-
Champaign, Department of Computer Science, February 1976a.

[4] Bmbley, D. W.. An introduction to KAIL. Lesson kaids on the PLATO
System, University of Illinois at Urb'anajCha.mpaign, Auvgust l975a.

[5] Embley, D. W. Experimental and formal language design applied to
control constructs in interactive computing. Technical Report No.
UTUCDCS-R-T6-811, University of Illinois at Urbana-Champaign,
Department of Computer Science, July 1976b.

[6] Embley, D. W. and Hansen, W. J. The KAIL selector - a uni'fiea‘{
control construct. SIGPLIAN Notices, Vol. 11, No. 1, January 1976,
22-29.

[7] Sherwood, B. A. The TUTOR language. Computer-based Education
Research Laboratory and Department of Physics, University of
I1linois at Urbana-Champaign, June 197L. ‘

_'_.“

Y

»



.

8. Use of ACSES in instruction (R. G. Montanelli, Jr., E. R, Steinberg) .. -

An introductory computer science course at the University

of I1linois ordinarily consists of 2 large lectures taught by a

- professor and a smaller diseussion faught by a teaching assistant

(TA) each week. The lectures introduce post new mfei'ial, vhile '
the discussiors. are small classes in which TAs ansver questions and
help students with tthrm. Bince aomewhat»more

“than. one- ha.lf of the lecture time was typically spent on FORTRAN,

it was initia.lly decided to develop a sequence of PI;'.[:(;“ZITeeaons to
teach FORTRAN a.nd to use these 1essons to repla.ce one’ ,lecture a week,
throughout thei semester.

Work on the lessons was begun in the fall of 1973 by
students in an honors course. During the course of the proJect,
most lessons wefe written by students. In addition to being in
computer science, many of the students had some teaching (or teaching
related) experience as teeching essistants , consultants, and gra.dera.
All the lessons went through numerous stages of testing “followed by
revisions, corrections, and improvements. Ultimately leaeons were
polished by highly experienced staff rdembers or students.l The
lessons were not designed according to some particular theory of
instruction because it is not clear that a suitable one exists
(Anastasio, 1974). . It was felt that the best way to errive at a good
set of lessons would be to encourage varying styles and techniques,
and to ultimately choose tﬁe‘best lessons on the basis of their

effectiveness or on student preferences. Of course this could

lThe authors would especially like to thank Professor H. (4. Friedman,
Jr., Sandra Leach, and Jeffrey Barber for heir invaluable help in

this area. , 1 1,@ l’
, -112-



*J;ﬁ_(and did) result in some lessons which had to be completely rewritten,
::but it avoided the possible trap of using 8 theory vwhich might not
'epply Mbre details ebout the development of the 1essons are given in
vabntanelli (1975),.wh11e Barber (1975) reports.en'indepth study of the

design, evaiuetion; and’subsequent'revision oh the basis of oata

sected during use, of one lesson. -

" 8.1. Fall, 1974

© The 1nitia1 use of 12 of the lessons to replace clasnroom
instruction occurred in the fall of 197& although optional, voluntery
use had occurred for some lessons during the previoua'spring and
summer. A relatively small class (50 students) taught by the first .
. author was selected for the first actual test. In order‘to obtain
some comparisons between the lessons and'ordinary classroom ihstruction,
the class was randomly divided in half, with one-half reeg;ving the
traditional two lectures and the other having a PLATO'lesson_replece
e lecture each week. There were three interesting results from this
early experiment. First, questionnaires administered at varying points
during the sehester indicated thet although students seemed reasonably
satisfied with PIATO early in the semester, the comments made at the
semester's end indicated some dissatisfaction. Four possible explanations
were: 1) early in the semester students found PLATO hew and interesting,
but the novelty wore off by the semester's end, 2) sthdents were more
concerned with grades by the end of the semester, 3) earlier lessons
eere in better shape than later ones, and 4) a computer memory (ECS)
shortage mede it impossible for a group of students in a room of
PLATO terminels to use many different lessons simultaneously.

119

-113-




i . _'*Undoubtebly ee.ch of these explanations played some parb in student
- e.ttitudes ’ and of coursq little could be done o, che.nge the effects

of the first two. However, it was the csse tha.t some of the ee.rlier

lessons he.d been better ‘tested than some of the later ones. 'J.‘hus some

'a.dditions.l improvements for these lessons were indice.ted. Also, the

shortege of Ecs ‘could have had & ls.rger effect at the snd of the
semester, because as students fell behind or needed to review, they

created a dems.nd for many lessons et the ‘same’ the, -and tnat wa.sn't

.
1

possible. : | L '_ L : \":vi L

The most encoura.ging result wes e. correla:bion of 58 between
the amount of time spent in the required PIATO lessons end the ..ourse
grade., If this was a cause and effect relationship, it illustrs.ted

the'usefulness of the lessons. L - LT

R

The final interesting result wa.s the lack of a significe.nt
difference between the two groups on schievement va.rie.bles. With
some of the jroblems encountered, this result was good, in. spite':'of-‘
the fact that all observed differences favored',fthe non-PIAth group,
with two exams almost showing significant differences at the .05
level. Other results showed sixnile.r, low drop rates in both groups,
and no relevant differences from the previous..yes,r's class on the
results of a student rating of instruction"'form. More detailed‘
results epneer in Montanelli (1975).- | . .

Three possible methods for improving' the instruction gotten
through using the PIATO FORTRAN lessons were identified. 'rhev were:
1) increase EC8; 2) revise lessons, espeoielly to include more

exercises and other interaction; and 3) consider more strongly

11l

A20:




encouraging students to use the PLATO materials. On line data indicated
that on the average, students probably did less than one-half of the
assigned material. A computer-managed instruction (CMI) program

(Anderson et a1, 1974) had already shown that PIATO could be used

. o :\» - -
successfully to increase studlnt"performance through CMI only.

‘A later experiment in fall 1975, considered this question. Also,

ECS was added in January of 1975, solving one problem, and revisions
of %essons were begun along lines indicated.

The study concluded that CAI materials initially written
by students coﬁld replace some lectures on the FORTRAN language
in an iotrodvntory cumputer science ceurse. However, it was obvious
that more effort must b snent on lesson development and evaluation

tban wes originally suspected.

8.2. Spring, 1975

The purposes of this evaluation were fourfold: (1) to get
baseline informetion on students' attitudes and to determine if there
were changes during the semester; (2) to assess the data collection
in CS records;'(3) to provide guidelines for revision and improvement
of some of the lessons; and (4) to provide recommendations for improved

implementation and integration of PIATO into CS courses.

8.2.1. Students' attitudes

It is particularly importan£ to evaluate studant attitudes
when a new technology is introduced. A positive attitude is a necessary
though not always sufficient condition for léarning. The'student}s
attitude must be sufficiently positive that she/he is willing to try

thne CAI lessons. Student attitudes can also serve as a valueble

-115=-

| 121



resource of informatipn for revising and improving both the lessons  -. -
themselves and methods and proéedui‘es in course implementation. Although
PLATO had been widely used in a variety of courses at the Unive:éitj of |
Illinois, it was anticipated tuat most of these beginning CS students
would not have hed prior experience with it. Whatjwas their initial
reaction‘ to the prospect of using PIATO and on whg.t basis was . this
made? As expectedvinos't of the students® in the -sample (71 out of 99) '
had not had previous PIATO experience. Responses to an ope;x,;;nded |
question revealed that about 39% of the ifxifial reactions were ﬁositive,

449 indicated fear or displeasure, and 24% could not be interpreted
positive or negative.

Thus, although most of the students had not had previous
experience on PLATO, their expectations were not negative., TFor the
most part, they were uncertain or favorably disposed. Their comments
revealed some concern and some confusion, not knowing what to expect.
Their sources of information ebout PLATO were mainly other students who
had courses on PLATC and instructors in this course. Tl;is information
mey not have been enti‘rely relevant hecause other courses mﬁ‘“paw(e_ _"
used PLATO in different ways than CS 105, e.g., supplementary drills
or computer management of instruction. It seems, therefore, the;t
students need some specific information about 08.105 a.ndilPI;A"m.

Three questions were asked at both the beginning and end of
the semester to assess possible changes in attitude f.oward PTATO per se.
Students were asked to rate esach statement on a 5-poi.t;f léca'.l'é,' from

strongly agree to strongly disagree. There was no statistically
significant difference between scores comparing the entire initial -

2Questionna.ires were handed out rand‘onflj to students in different
PIATO sections. 122

«116=






ploof99tothooudofa~storlqleot7s. llorv'u"a;h‘om‘

In!.ﬂcmt di!‘teronee when the data m l.m'bod f.o tbo % students

nu-a out quuuonmm both in .mmu-y md April.‘ novemr,
mbenmﬁm!ﬁlﬁl,mmimwlwlm“
eﬂuntnamuvducmedwmu !Nluﬁmtmdmumuu
£ PIATO s an mmmwc:' awmtnumum"
wmmﬁmmh. SR L

';.\ ‘\ s

: o: 'hhe maant- (M)vw mmdfmia to s -,‘

a8, 1t mn'tthat mrom so grest, buttmtm'ot ﬂn
o 5o gour. | | s
mt'ﬁmp atudentsmatcbmmoum'bhqcma_
0g” mtmc.nammte-ugm mrm.my,mgmmst
wum-m@mmummmamm R
wstnmpeettot.mxmm, mmmumma
inadequate response judging. The, Tespon most rr-mﬂveiyd as
theraome vas forteomp:' um-etmmtoommu;‘a

’J




Attitudes of CS 105 Students to PIATO at L
Beginning and End of Spring, 1975 Semester ' ~

vy

ERIC

Aruitoxt provided by Eic:



c\mbernom ‘bo cope with. : Another maJor complu.int wmlaok 'fv_ cla.r:lty,»

" s

confusing Some com'pla:lned t‘ne.t lessons were too ong _r'boring

U

P

. 8.2.2. _ Da.ta. col]ect on

m'ba. did not tell whether e student hi ‘complei

. '.on a. lesson. ,

-~ "signed 1n.

m.ta reveeled tha:l; the a.verage time "epent .

o

| '___';;-fare given here.

I.lesson - mean t:lme
. 'fjorbif'g b8, 63'-'" o
loops | . 61.116 o




‘ Another ueeful o.spect or the de.to collection wos the record
_of last date the studerts m signed on. A quick gla.nce enabled the -
| ' ’ctor to check up on attendnnce. In Aprll & random sample of 26

;students in each of the six C8 105 sections ves chosen. ouy 6o¢ of
L these 156 students had.‘ signed onto the. syatem w:lth:l.n the precedins .

2 wecks. ‘The reasons were not ascertoined 1n this csse,,r

. '.the 1n+.ere.ctive feeture or PIATO..Y I.eesons varied ":ln the'n\mhe,r; Qf;

versus varian copy ha.ndouts of the lesson. Unfortunately,'the _PIATO

.. _have taken plece. It was also down during the preceding‘ 'weekend

unable to check out her work. » S
One shou.'l.d not assume results of the lo-m:l.ntrbe quizze

ldependable for d.ra.wing concluslons. However, they might prov:lde some‘

. _tentative :lnslghts. S ; o . . e |
Mean Scores on & lo-point Quiz Given by '.I:As 1n mz sactiong,
- Fome
Coercive Coercive Hendouts .
Frequent ‘sets :
. of exercises 7 76 26‘ - 6 01
I‘ew; sets’ of_ e :
exercises 7°% 6 Bh _ 7°5l

126




| . It is difficult to understa.nd wtw students with fewer exerct:lses |
| on ha.ndouts did better than thosé who ha.d more exercises. (The reverse
was true on PLATO. ) Note ths.t the highest scores were obts.ined by
| those who had more frequent sets ‘of exercises a.nd who were in coercive
conditions. ) It was decided to repeat the experiment a.gs.in the next
semester, when it was a.nticipated that the system would be more stable
a.nd the lesson thorough.ly tested. Results are s\nmna.rized in section
A‘second experiment was set'up for lesson’fortfnrtl. The purpose |
was to see which instructiona.l conditions are most facilita.tive. 'l'he |
factors in the 2 x 2 x 2 design were (). coerciveness (required or
optional), (2) instructions to do problems or do them correctly,x
a.nd. (3) size of exercise set (2 or L of'each type). Do students follow ;
suggestions in the instructions about how much pra.ctice they should get? |
Table 2 shows that students in the optiona.l conditions did more I-a.nd F-
format problems then in the required.conditions. (This ms.y heve been
due.to an a.rtifs'ct of the lesson. Roquired_ students were not\ given
the opportunity to do more than required.) ' But in the E;forms.ts'
optiona.l students aid fewer problans ‘The same pa.ttern emerges when
- students are told how ms.ny problems to do correctly (Table 3).. In the . .
I- and F- formsts optional did more tha.n suggested, in E- fomat they
‘did fewer. This may ha.ve been related to problem difficulty. | Ta.ble 4
- ghows that all students did 8 rather high percenta.ge of problems '
.correctly in I- a.nd F-fomat exercises. However, in the E-format
| ercises > the percenta.ge of. problems done correctly wes - only 51%
in required conditions and hh% in optional. It is appa.rently the case

that when the problems are not too d;.{ficult, students follow suggestions

-121-




Table 2

Mean Number of Problems Done by Type of
- Exercise and Experimental Condition

Small Sets Given ~ . large Sets Given
o | Do Do Right Do Do Right
" ‘I-format (N=316) o o
' Required 4,2 Sl 8.2 9.1
S . optionﬂ- . . 802 Boh 12-1|' 12.2
|, F-format (N=300) | o
) Req_u.ired . 6 . 5 70 O 120 0 ’ ) 1308
. Optional 9.7 9.4 13.5 LR
" E-format (N=ch2) . o N
Optional 8.1 8.8 . 11.8 12.8
Ta'ble 3
Number of Problems Done corréctly
Instructions
Do ' Do Right
I-format '
i Required 5-2 601 )
_ Optional 8.2 7.9
" P-format
. Required 7.8 8.9
Optional 9.1 9.1
E-format
Required 4.0 8.6
Optiona.l 500 505
Table 4
Percent of Problems Done Correctly
Condition I F. E
ReQIlired ' aho 2 % ol ‘ 500 8
- Optional o 76.0 77.6 3.6
128




for how much to do, or pra.ctice even more.‘ But when some- ulty \
ie encountered, they do eignii’icantly less then req,uired. . ].‘t should

be pointed out thet optional etudents did a. lower percent correct a.nd »
. tade was statistically sigxifice.nt However, 1t might _"not be etmcetionally

eignificant Thet is, a student performing e.t 76% eccurecy‘ might not

| do a.ny worse on a. subsequent achievement teet then \ etndent operating

e.t an 851. accurecy level. There mey be coneidereble difference between ;’ i

~ students - opera.ting at. Sl% e.nd NL% levele In rect, neither of theee

levels would seem to be sa.tiei’actory in terms-.-»;o‘rf"edequete understendiné
Appe.rently a rea.soneble minimum requirement for prectice

15 not sbrasive to students. Although not eeeentiel for. 1".,.;, difficult

concepts, it seems necessary for more difficult onee. Aleo, the '

difficult problems (E-forma.t here) ehould be eccompenied by eome form N |

of corrective information in feedback and/or help eequences. :

r.

.

8.2.4. Classroom observations (course ! B
Studente took notes on leesons.__ A questionneire wes distributed :
after studente had completed leeeon fortif. Reeulte ehuwed that e.bout :
| 2/3 of the students took notee on leeeone :t’ort‘if e.nd i’orba.rith a.nd that -
3/4 of the students who took notee Knew that the. me.terie.l wee covered
in the text. | | :
‘Whenever the classroom was visited, a proctor we.e sea.ted a.t
a terminal near the door. She/he wore no identii’ica.tion nor wa.s there | '
‘any sign on the terninal. Students had no vay of knowing the.t a "am_ o
being was a.ve.ileble for help. Furthermore, proctore genere.'l.‘l.y were | <

busy progremning or plearing a game on PIATO, eo that ii’ a. student did ra.iee

a hand for help, it was unlikely to be ecknowledge&
;’ ’snﬂ ;\i ,; ‘

.'.‘,;'Y- <




8.2.5. Recomends.tions |

~l. More extensive ‘and better comunicstion should be ests.blished between C

instructors s.nd students as well a8 between proctors and students. cs
, 105 instructors might help creste a more positive sttitude by orienting
students as to the goa.ls of the PLATO lessons in C8 105 how much time
they will ts.ke, whs.t they can expect from the lessons ) who vill help
them ir there ere problems, snd so on.- It is elso importent ths.t
they tell the students thst PLATO is used dirferently by diﬁ‘erent
courses, therefore s previous negative experience msar not be st ell
s.pplice.ble here. ) '

Provide a ls.rge sign for the proctor to put o"i ',"top or his

terminel so ths.t students know ths.t a person is in the room _s.nd '

 available. Proctors should be oriented to the responsibility -
walking around the classroom periodice.lly Also, they should he.ve Do
worked through each of the Lessons themselves. ' IR |

The attendance, or lack of it, at- PIATO sessions should be

investigated. It may be part of an overall student syndrome ocl'
generally poor class attendance at this time in the semester., It msar
be in psrt a reflection of student s.ttitude tows.rd the usemlness of
the PIATO lessons at this point in the course,
2. Revige data collection to include the ‘time it ts.kes to complete
ee.ch lesson, number of times the student hss completed entire lesson,
and mmber t‘f)f. \times the student has entered lesson.
3. I.esson revisiong 2v:-1d be s.imed at minimizing student fmstration
and using mor, .- . L8 intere.ctive ce.pe.bility. The length of time
it takes s adents to complete a J.GBBOD. mst™ b’e compe.tible with smount

_of time allotted. Some of the lessons s.pps.rently ts.ke more time ths.n
s.nticipeted becs.use students teke notes. For long lessons, s. mm'ber of

130, -

:,'.' ..J.Zh- l‘:v’




ERIC

Aruitoxt provided by Eic:



i
+

8.3, Fall, 1975
| After a year's experience ‘using the'FORTRAN. lessons, and
| with some revisions planned for the summer of 1975, 1t wa.s vdecided
to conduct a large scale, controlle_d experiment in CS 165, in the
fall of 1975, in order to deternine the effectiveness of the lessons.
 In order to control for effects of instructor and time of da.y, four |
cs 105 lecture sections were scheduled, two a.t 9: OO am and two a.t
19.0_0. am. Students at ea.ch hour were ra.ndomly essigned to one of the
two sections » and one section a.t. each hour was erbitrerily chosen-to .
use PLATO to replaceone lecture per'veek, while the otherhedtwo .
lectures. Finally, two professors (A end B), neither of whom hsd ever
used PIATO prior to the start of classes, were assigned to the S
sections so that professor A teught a PLATO section at 9 oo e.nd a non- o
PIATO section at 10:00, while professor B aia the reverse. (A fifth
section, taught by a third professor, used PIATO, but wss not involved
in the experiment. ) More details concerning this experiment are. a.va.ilable
in Montanelli (1976)
The three hypotheses of this study were
1. PIATO students would enjoy the course more, and give it a stronger
recommendation to their friends.
2. PIATO and non-PLATO students would perform equally well on exams .
and homeworks in the course. '
3. The drop rates in the two types of sections would be similar._ '
” In answer to the question (from the questionneire a.dministered
with the finel exam)- 'If a friend were taking CS. 105 next spring and

PIATO end non-PLATO sections were offered, what would you recommend he

ta.ke'?’ PLATO students strong]y recommended PLATO (112 circled 'definitely




distance to CERL' (Unfor'b\mately the terminels e.re ]ncate of _,the north""; a

37 checked 'Lack of huma.n contact' and 31 checked 'PIATO going down ’

the next two most frequent],v checked responses. '.l‘hus the mador" problem

was unforttmete],v out of our control. L

scores ‘on’ exams and ma.ch:lne problems 'I'here 1s no reason to .suepect the.t

~'the PIATO drops were poor students. However, '@f.»the' droppedPI.ATO

ERIC

Aruitoxt provided by Eic:



‘tudents were. below everage, they could not heve hed e la.rge enough
‘,fkerfeet on ‘the reeulte to e.lter the obvioue eonelueion._ 'rhis reeult
.Aie certein:Lv 1n egreement with moet studies of the effects of OAI
‘In fa.ct, when J’emieon, Suppes, e.nd Wells (19(1&) surveyed the etfectiveneee
ot alternative ine‘bruct:!.onel media, _they eth.ted- ' T' o

Teae “bhe eq\ml-effeetivenees conelueivon'seem to 'be broedJ,v couect
ror most eltemte methods or ingtructio‘“ e ‘ ‘ .

tell instructore a.nd 1eeson authore how wellub leseon 18?'170!"

E Thus, continua.l nsprovement is possible, and perhepe ;eventna.'l.]y CAI

- ma.ter:lele will be as good as the beet 1ecturer, e.nd therefore better

thanmany

on the orther ha.nd, the hy'pothesia about equa.l drop"'re.tee | B
‘ we.s reJected. '.l'h:le wae e eurprleing reeult especiauy when f'che eme.ller

L experiment 8 yea.r earlier (under worse conditione) shwed no a:lfferencee. :

"AA'However, the ea.rl:ler course my have been 3 speciel case

relet:lve]y small, elective course w:lth meinly Juniora and een:lore 1n

134

A
b'.




R
[

- _'psyoholbgv ahd similar fields., These students were more involved and |
'4 ) intereeted in the experiment, . and they may heve sta.yed for thst reason. . .
On the other ha.nd, cs 105 is & required course for freshmen in ‘the college
-2 comerce N e.nd the students vere ﬁresume.b]y less interested in long o

- term educetione.l goals (for themselves e.s well e.s i’or the PIATO me.teriels), L -‘

: However, e.lthough this drop rate was disturbing, there were e. few, likely

reesons for it ’ a.ll of which could be fixed. For one thing, vthe first :

. three weeks were confusing for the students bece.use they:;'_ad pre-enrolled

‘ .in a course which they eo:pected would consist of two lectures a.nd a-.
discussion eech week. Instea.d, three-fifths of them hs.d a; lecture -

' cancelled a.nd had to sign up for a PIATO smction insuee.d. These sections
ceused a lot of trouble , 88 some were scheduled for veek-ends .. end ms.ny
students compleined thet they were uns.ble u.. meet arz,v of the reme.ining
available PIATO times. Although most of t.;is confusion we.s necesse.ry
due to the nature of the experiment, in the future students will
preregister for PIATO sections Just as . e.ny other clsss. A second
possible cause for the different drop ra.tes wa.s the.t for the first

R “ o

problems

 few weeks, PIATO students were required to 4o their pz-o‘ i
- in.one of the online y interective compilers. Although ‘Lt wa.s thought
4 that thi's would be fun for the students, the compiler ge.ve very poor
.response time because of the amount of processing going on to check for -

'errors efter each student keypress. . Finally, ps might hs.ve_been due.;g'; _

.in pe.rt to student dissetisfection with the two poor les ons which were e 5
la.ter re'written. Studexrts had not been systemstice.lly‘polled" mout
' the lessons before, and the reletively negative reaction to two of : f ‘ ~ .

them was quite surprising.

o Another possible expla.nation for the higher drop ra.te on
PIATO, is that some students (< loisieﬁe a.nti-ms.chine ‘and thet GAI




wi:u elw&v;s have this pro‘elan. '.l’he authors. do rot feel i!lt the i
la.rge differences found here could be a.ttributed to thia reuon. Howover,
| 'some data. on this question is reporbed below, for cs 105 in aprtng 1976
. m stmmary, this experiment ahowed tha.t m'ro lessons can be

used to repuce one 1ecture a week in a.n , ccmmter programing
.cou:ps_'e. Students learned. as much end pref""

sections '.l'he remaining problems a.re- 1) --'-IB ‘.‘bhere '. *higher drop

e

E cla.ss.

In the first of these, Barber s (1975) lese;_

1ess frequent) PIATO coercive studente were

) them. : Ha.ndout students were' locked otrt. of PI.ATO a.nd_ were gi v

- sa.w a.t the terminal. The more frequenti'queet.'

ended with a. few exercises. The "less frequ”"nt uestioning

o was Bimply ‘bhe original lesson which contain ¢

21&3(3

__ -130- o

_ drills in va.rious pla.ces.‘







R Y

w*M_the»interummlts Lrom this ey
ﬂnd' » or no simiﬁesnt smmm-. 'rirst‘ ret, sbod
thive aeupe did not use’ the m Yoy nor' endlibi : 1e

pstto:jeme dit;erences rron:the coercive Wn se'tney me combined

it

nstioning graups, on either the quiz over mumn srithmetie given

rere.l deys after the 1esson or on’ e. question ‘on’ TORM erithmetic

an exanm given three weeks later. S 7- I L ke ,
‘There were some interesting dii‘rerences in sttitudes found '

& questionnaire. distributed imediste:w mmng the PIA!I.'O seseion.

>-vay enalyses of variance, mode (PLATO vs, mtten) by questioning ’i

ore vs. léss frequent), were run on the questionne.ire items. 'l'here o

re significant (F(1, 77) = 16. 8, p < .001) di.fferences between PIATO

4 aon-PIATO groups in whether the students wm:.'.l.d recomend PLATO or

handout to & friend. PLATO students recomended PLATO, .whi:l.e non-

ATO students were neutral. Other stetistics:l.'w signiricsnt results

nded to show that PIATO students with J.ess frequent questioning were

1] hsm ebout some parts of the 1esson then the FPIATO students with

re frequent questioning or those with handouts.



The only _aifference between the two medie. was the.t PIATO Judged e.nd
comented on each answer, but the ‘handout etudent he.d to look -up a.newere ;

and commeute in the be.ck. ~The PIATO version \ge.e perceived to be run,

entertaining, e.nd more intereeting by 13 or h5 etudente vho responded

e i © o i ot (e e s

and’ we.s credited with mald.ng it easier. to .'I.ee.rn by 11 etudexrbs. mey
e.ppe.rent],v had diﬂ'erent eu:pecte.tione of CAI the.n a texbbook. They B

complained that "you can't ask it queetione. " '.t'he same was true of’ _tne]_ o
handout, but nobody expected ‘4t from & text, RS

| More frequent queetione on FIATO . geve the etudente more _
coni'idence tbat they hed lee.rned the me.terie.l end e. etronger feeling
that the feedback he].ped their underetanding. : There m no. evidence ,
of such differences ror the hendout etudents in the two queetioning
conditions.

Student behavior was essentially the same in the PIATO coercive
and non-coercive conditions. Contrary to expecte_.tion: (Berber,.'1975;
Anderson & Faust, 19{3) , students under learner control engeged in
appropriate lee.rning strategies. The coercive students .did ‘no'l.'. belk
at the requirements that were imposed. | The attitudes evidenced on ‘the
questionnaire were consistent with this behe.v_ior. - 8tudents did not have
a strong feeling that they prefered to make their own decisions sbout



L p;ﬁ.,;t_e,e’tgmthe students were motivated to lee.rn the

e e

the merthod of presentation. : More complex content Hmight me -resulted ' : o

4n performance differencee._ .’ o - i ;‘ - S
The second experiment in CS 103 involved the hypothesis that~ e
students would do more work in the leseons a.nd thus a.chieire better
underste.nding of the course ma.teria.l if they were requirqd to do the
lessons. In order to test this hy-pothesis , the® ttrdente in CS 103

were randomly divided into three groups. In Giroup- 1; doiug the PLATO -

lessons was not counted as part of the students' grodes.‘ In‘ the other .

S_—

two groups, doing the lessons counted 5% (Group 2) and l?% (Group 3) of the :
grade with other factors down weighted a.ccordingly '.l'hé‘ expectation .l
was that increasing the degree to which the lessons coux?ted in'a gre.de
would increase studying the lessons, and thus increase ]ieerning

Based on 80 students (26 or 27 per group) who ! greme.ined in
the course for at least 5 weeks and took the firet exa.m,.é the number of
PLATO lessons completed (using time in lesson e.s a comp:f.etion criterion)
is¢presented in the £irst row of Te‘ole 5. Although there ie sbout 1 chance |




. TEDYE S

Means on Perfoma.nce Data or 'l'hree Groupo
with Varying Percentages of Their Grades .
Determined from Complefing PLATO Lessons

Growp 1 ° Growp 2 Group 3 Probability®
0% 56 15% g -

Means®

Number.of PLATO lessons . T _— L
. Number of PIATO lessons - | !
_completed ignoring drops 8.5(20) - 9.3(24)  10.5(23) |- o

To'ba.l machine problem , o o S
- points 1%6. 140, Ik, o 50
'vHour exam 1 written 65.7 . 6h.2 70,9 - - - 7,29
Hour exam 1 PIATO . 6h4.7(23) 60.6(25)  72.8(25) | 006
Hour exam 2 50.8(16)  50.0(23) ©  52.6(23) ™
‘Final exam ~ 128.3(18) 114.6(23) 129.3(23) S |

1 Probability of the obsarved F value from a l-way analysis of variance
between the 3 groups.

2 Group sizes were 26, 27, and 27, unless specifically indicated. (i.e. 16
students in Group 1 took the second exam). %




“ m te:ken.

" in the fa.ll of 1975. Te.'ble 6 preeent‘ some
,the required PIATO 1eseons. ¢

In generel, 1eeeone were requir d’to ;be

an exam, which eccaunts for the pile-up a.rmmd Septenber 29. dd o

2 glves names (eomewha,t mneumonic) or the requ.in o lessorxs. COJ.umn 3
reports the number of occurrences of a type of error which occurred

when a lesson aid not properly return to the opera.t:l.ng syatem a.fter '
execution. Leseon fortchar (FORTRAN character ha.ndling) hed. a. relatively"'
‘large number of such "errors" due to an experimentel quiz which was
appended to it (see sect:l.on 5.4. on the quiz syatem) cclm k gives

the mumber of times each lesson was invoked by a student inv 't'.he class ’



PO ..,.....'-......-..6,- Fae e i i e e bl o s e e e g ok e fams it s ¢y gese by o Lic e e s g an > owrp
o B B . o : B A s e

Teble

€8 103 Fall 1975 - Lesson Data Accumileted Ouline

Fuber Fuber of - Huber of - Aversgs
, ~ Bad _of . students  students . time . - time
'+ Lesson * exits uses  entered  completed per stidemt: -’
134 60 Cw %
o e 1w '47 o |
ab 6 0 ko
m o & ow e
wm & 6 .73 8.
208 66 | o w s
8T 18 2 Y 66
o 52 3 or 3
149 57 53 e e~
160 46 37 683 . 15
ol kg 2% kg 10
95 55 18 30 53
122 5T 3 2 46

. fortintro
fortarith |
- fortif
" 9fe5  tortomtl
9/29 - fortarrsyl

F

°9/29  futsin

) 10/20 fortarray2
‘10/2'7 binsearch
11/3 fortfmt2
~'11/3 nunbers
11/16 fortsubl
12/2  fortsubex
‘ 12/h  fortchar

H O WM M H W O WM =N F O KN

=
\0




e 'the e.verege t:lme for studen‘bs who completed the 1eseon.

].est col\nm 10 Table 6 givee upper bounde (heceuse e ), tudente,were
-reviewing) for the everage times o' complete the leseons. Note‘thet 7
.the reletive],v poor percentage or etndente ﬁnishing fort.e.rith 1e an
e.rtii’a.ct due to the cxper:lment deecribed ea.rlier in wh:lch one-third

of the students signed-on to the syetem, but were directed to a he.ndout |
and prevented from finiahing the lesson. Although the generelly decrees.tng A
nunbers in columns 5 and 6 would seem to 1nd:l.cete decree.eing use of end
interest 1n PIATO, they are also due to a rele.tively h:lgh dro:p rete
which left only 67 students finishing the course arber an . 1n1t1e1
enrollment of 87. This result was wgely due to 13 etudente w‘ho dropped
efter taking the first exam (in the 6th week), but before the Bth 'week
deadline. One-half of this exam was given on PIATO, a.nd there were
several problems resulting in 1oef eo:ame end frustreﬁgd'etudents which
could have caused some of the extra drops. ‘Another' :I.nd:l.cetion of
assatisfaction with the PIATO e.am came from student responses to n

end of semester questionnaire. Although only a few ctodente 'cr':'l'bicized
PIATO, four said it wi.s fine ¢ -ept for the exam. Also near fhe end of

. mad mman amcman adudndabows a Astinaa

PERSREURU U T e o mracad .




Although no experiments were run, cerhe:l.n deta. m 'couected |
n 03 105 in ovder to cbserve roubiie use of PLATO. ' Por exmple, Table 7 -

‘uf"'preeentu course evaluetion resulta for 6, semestera 1n CS 105. only those

_’vprofeasors in PIATO sections ‘a8 compared“

profesaors ¥ho te.uglrl‘. gt 1east two eections, w:lth a.t 1eut one oh, p:.uo

: '(profesaors _'

ol are :I.ncluded. Although resu.'l.ts within the fell 1975 semept
‘“z and r) wauld tend to ',be merprma a8 shmd.ns over eﬂutim for

ﬂ‘lth thos qm professors .
l'.m non-PIATO sections, results from -l-.ug ,f,m.:'mre”o E S

 whio teught PLATO and. non~PLATO. sections ' aepeute seme,

lupport this idea. One possib].e explana. 1on 15 thet bcbh profeazors E

and re:wrl:ed after £a11 1975, thet thef trled. to give the i first

lecture to both PLATO and non-FLATO grou?s. ‘They both fe:l.t f.hat'theu
't
lectures to the PLATO sections lacked coptinuity a.nd otten overlapped

or left gaps with the PLATO lessons.

8.5. Summary
A few general conclusions can be drawvn from the 1erge n.mount

of data analyzed here. First, PIATO 1e§sona originally written by

e fccde mma Lm mrmmd bn mamTana Ana Tanduma maw waal dn {nkwaduskary




[T

benlts

'

o

PR R R Y111 1 S

' . . e e L e R R TN SANYL e e b e e 1

4






¢

Referencee

[1]

(3]
[’4]

(5]

Andereon y R. C. and Taust, G. W Educational ngcholgﬂ, Dodd,

. Mee.d a.nd Cmpa.ny, New. York, 1973. .
)

Barber, Je A. Data collection as an improvement technique for

'PIATO lessons. - Report UTUCDCS-R-75<TTT (M.S. Thesis), Department

December 1975

2 ¢.,,_

of COmputer Science, Univereity of Ill:lnoie at Ur‘bana-Chmpe.isn,

mntaneni R.. G., Jr. C8 103 mo eacper:lment, rm 197h |
Report UI!JCDCS-R-75-71|6 Department of- Computer Science 3 University of

Illinoi ‘bUrb - 1975. -
/g_sa. anaCha.mpaign,JquW

Montanelli, R. G., Jr. Evaluation of the use of CAI muterials in an
mtmductory computer science course. ‘presented at the AEDS '

International Convention, Phoenix, Arizona, May 19(6 ' ,
Jamison, D. ’ Suppes :. P. and Wells s ‘8. - The" eﬂectiveneee of e.lterna.tive

instructional media: a survey. Rev:l.ew of Ednce.tional Reeee.rch, VO:I.. LY,
No. 1, Winter 197k, 1-67.




f?-::'_,lessons. 4 _ :
: _,’_}’.»-Science » University '

Barnett, R. D | _.
R-T5-685 (M.S. Thesis); ~Department of’ Cmputer Science, University of '
- T114inois at" Urba.ue-Cha-paign, Ja.nua.ry 1975. o ST : ,

Denielson, R. and Nievergelt, J. (1975). An eutomatic txrtor for
introductory programming students. - Proc¢. Fifth Symp. on COmputer
Science Education, SIGCSE Bulletin, Vol. 7, No. 1, Febnmry 1975.
Denielson, R. L. PATTIE: An eutoma.ted tutor for top-down brogramming.
Report UIUCDCS-R-75-T53 (Fh.D. Thesis),. Department of Computer: science y
University of Illinois at Urbana-Chempaign, October 1975. -

Davis, A., Tindall, M. H. and Wileox, 7. R. (1975). Interective 4_e‘rror
diagnostics for an instructional programming system.‘ Proc. Fifth -
Symp. on Computer Science Education, SIGCSE Bulletin, Vol. 7 A No. 1,
February 1975. ,

Davis, A. M. An interactive analysis system for executien-time 'e'rrors.
Report UIUCDCS-R-75-695 (Ph.D. Thesis), Department of Computer Science,
University of Illinois at Urbana-Champaign, Ja.nuary 1975, s

Eland, D. R. An information and advising system for an a.utomated :
introductory computer science course, Report UIUCDCS-R-75-738 (Ph.D.
Thesis), Department of Computer Science, University of Illinois at
Urbana-Chsmpaign, June 1975._ .



e

~

.of SIGCSE-SIGCUE Joint Symp. on Computer Science Education, SIGCSE
Bulletin, Vol. 8, No. 1, February 1976.

Gillett w. D. ' Tterative techniques for detection of program ‘anomalies.

eubmitted to the Conference on Principles of PI‘Ogrmj_ns Len ges, Tos -

Angeles, Calif‘ornie, January 1977. - R

Gillett W D. Interval maintenance in an interactive environment. '
in preparation. o I :

Izquierdo s Fo 3. A generator/grader of problems about eyntax of .
programming languages to be used in an automated:exam. aystem. : Report
UTUCDCS-R-T5-755 (M. 8. Thesis), Department:of Computeér Science, '
University of Illinois ‘at Urbana-Champaign, Septenﬂser 1975. .

Mateti, P. An sutomatic verifier for a class of sorting programs
(Ph.D. Thesis) s to appear as DCS Report,. September 1976.'» L

Montanelli, R. G. , Jr. C8 103 PLATO experiment ‘Fal1 19‘(14. : Report
UIUCDCS-R-75-7h6 Department of Computer Science, University of
Ilinois at Urbana-Champeign, July 1975. * .

Montanelli, R. G., Jr. Evaluation of the use of CAI materie.ls in an

introductory computer science course, presanted at the AEDS International
Convention, Phoenix, Arizona, May 1976. ‘.

Montanelll, R. G. s JT. Using CAI to teach. introductory computer
programming. submitted to Communications of the ACM.

Montanelli, R. G., Jr. and Steinberg, E. R. -Using PLATO to teach
introductory computer sclence - - .an overall evaluation. in preparation.

Nakamura, S. Reorganization of an interactive compller, (M.S Thesis),
to appear as DCS Report, August 1976.

Nievergelt, J., Reingold, E. M. and Wilcox, T. R. The automation of
introductorv commuter science courses. in A. Gunther., et al. (eds).

Gillett, ‘We Dy An interactive ‘program’ advising system. -~ Proc, -



Segﬂ*”B:"Zr kcompa.rison«of student»peﬂermnoemndermtwofmethods,
- error, announcement. ) Report UIUC]X!S-R-TS-?E? (M.S. The is), 2

Chémpaim, May 1975. . e L H
Steinberg, E. R. a.nd Monta.nelli, P.. G., Jr. Effects “of" vcoerciveness -

and aspects of human-machine interaction in & computer science -CAT:"
lesson. to be submitted to Journal of anputer-bssed Instruction.

Tindall, M. H. An interactive ta.ble;driven pa.rser system._ Report

. UTUCDCS-R-T5-T45 (M.S. Thesis), Department of Computer Science s Universitj
‘ of Illinois at Urbana-Champaign, August 1975. -

Tindall M. H. An interactive compile-time diegnostic system. Report

UIUCDCS-R-75-7148 (Ph.D. Thesis), Department of Computer Science, University

of T1linois at Urbana-(!hampaign, October 1975.

White, L. A. CAPS compiler CPU use report. Report UIUCDCS-R-75-790,
Department of Computer Science, University o Illinois at Urba.na.- L
Champaign, December 1975. -
Whitlock, L. R. . Interactive test construction and administration in
the generative exem system. Report UIUCDCS-R-76-821 (Ph.D. Thesis),
-~ Departmnt of Computer Science, University of Illinois at Urbana-
Champz..gn, September 1976.

"Wilcox, T. R. The interactive compiler as a consultant in the computer
. aided instruction of programming. Proc. of the Seventh Annual Princeton
Conference on Information Sciences and Systems, March 1973.

Wilcox, T. R., Da.vis, A. and Tindell, M. H. The design and implementation
of & taeble-driven, interactive die.gnostic programming system. to appear
in Communications of the ACM.

Wilcox, T. R. An interactive table-driven Giagnostic editor for
high-level programming languages. in preparation.

S N S

C LI









 Appendix: cmtei_-‘gsc:lence Leeeone

, ”lnd Ent I.eeeons' o

: ‘ Descr:lpgion ,
by 1nto the ACSES Byaten

Mwmnel ‘Requeat
PEIIINTOY and Processor T I T

. Mer Index to the (:onputer .

_ Bcienee Beseone ' LT L
Introduction to- the Mini- e st

' }gt-mnguege Seqnence S L
Intro. to Lenguege Independent : neerlycanplete S
_:Progreming Sequence . Ve Tk
. Introductioh to the
.}Sequence - IR
_mtroduction to the. roamm :
'I.enguagc a.nd I.eesona )

Introduction to the ms:tc f,
Lesson - Sequence

_ Introduct:lon to the COBOL
Lesson Sequence :

Introduction to the APL Sequence " op

' Introduct:lon o the meo
Lesson Sequence ST

Introduct:lon to the Da.ta
Structures Sequence

T‘Introduction to the Numerical .

o Analyeis Sequence R S £

" Introduction to the Ingical . operational
“Dee:lgn Sequence o R ,
:;Rauter Tesson for CQMter _operational

o Science COurses




152




" Name | - Descriﬂion ’ ,1;_".,
" introprog TIntroduction to the M:lni- L
: Langua.ge Sequence -
. pal Pictorial Programing I.anguage
for Children
o Bomiga o - niﬁifﬁg'ranguage
plad Recursion ' o
csmini » Mini Programing Sy'atem
o Prototype S
cstrees Tree and List Manipeletion
. ; Mini-I.a.ngmge - ey IR
roboint Introduction to the Robot Ca.r
_Sequence , T
robocar

robostack

Robot Car Stafck‘moritm, T
' roboback

R ork in pvogreas
Robot Car Backbtrack Algorithm worksxm?msress

. - 153

-146-

PR e




d, Ia .Ind“',en"dent'.‘ Ségrammir R

: - Descriﬁion : ; e “'stetu_s.v. ‘
- Introduction to Le.ngue.ge I n'ee.rly‘cempl‘ete
Independent Progra.ming Sequence

FlovCharting . - nearly comlete
DO-Type Loops e L mretionn

[, e oo

o beg.thbloek S Begin Bloc,ks L - S operetional
detab l')'eclieieh Te.bles - | operetiona.l
recﬁfee : .Recursion o B opera.tionel |

ti‘igref‘ Direeted Development ofa N work 1n progress

‘ formlang . Fome.l Computer Le.nguages . ' _@eeg;y*"cmiete
ywgrammar . Two Level Grammers -+ work: in progress




Name
pllintro

pllarith

.pllstring ..

pllif

S pllas

pllarray
pllarrayx

pllproc
pllio
plledit
plleditdrl
pllpic
pllrecurse
pllstrl

e. PL/1 Lagguﬁse

Description

Introduction to the PL/1
Lesson Sequence

PL/1 Arithmetic Operations

. String Operations in PL/L =

PL/L IF Statements and DO
Croups

 PL/L'TO Statments =

PL/1 Arrays

Advanced Examples of PL/1
Arrays

PL/1 Procedures and Subprograms

PL/L LIST Input/Output

'PL/1 EDIT Input/Output
PL/1 EDIT Input/Output Drill

PL/1 PICTURE Specification
PL/1 Recursive Procedures
Date Structures in PL/1L

155

=148~

Status
F
operational

operational

operational

operational

operational -
nearly complete

..nearly complete

near]y._gqmplete

 operstional

nearly complete
nearly complete
work in progress
nearly complete
operational



" fortintro

fortarttn

b e e e % b

férbdo " .
fortsrrayl
forta.rrwe

forhmbl L
. .toz_vpgube:c
" fortfunct

PR ..» -

fortfmt2

fmtsim
fortchar

Deacrig!ion T

Introduction 10 the !‘ORTRAN
Ianguase o.nd Le(aonn A

‘Introduction to rmmn
Argahneuc )

LI

wrk :l.n pvogreu

opeutional

DA

I'ORTRAN JI' statemnta

Character Ha.ndl:!.ng :!.n FOM'RAR

156

i_,, \r s,

,f‘nol.rm .cmlete, S

opera.t:l.onal

opera.tional 3




Name
basicintro

basicbasic

_ basicref

basicrefl
basiecloop
basicarray

« BASIC e

Description

Introduction to the BASIC
Lesson Sequence

Introductory BASIC

_Beginning BASIC

Advanced BASIC
FOR-NEXT Loops in BASIC |
Arrays in BASIC

~ =150-

Status
Just started

Just started

_work in progress

work 1n progress
Just started
work in progress



o Name

;

éobdlintro

coboliden

R

co’bole_dit

‘coboldata

-‘cobolproc

cobolrei_’

" h. _COBOL Language

_ ‘ADesAcriggion
Introduction to the GOBOL
Lesson Sequence

COBOL Tdentification and

. Baviroument Divisions . . . . .

Advanced COBOL PICTURE
Clauses

. COBOL Data Division
COBOL Procedure Division
COBOL Language Reference

158

s
1,
[ P24

Status =

operational

operational

operational

operational -
operational
work in progress



i. APL Language

Name Description - - Status
- aplintro . Introduction to the APL operational
Sequence o
aplscalar APL Scelars ‘ .*  operatianal

bl

aplvector CAPL Vectors - - -0 operational

.......

-15-




work in progress
‘Work in progreas

e g T et e e e ey Sty e

~

h
' : . <.
‘ N - ) .
-®
. . .
*
N ..
L Wk ‘
\ ) :
‘.' * I . ;
LN\ . N
' ‘ ! v“‘\
. » 3
) .
i N ..
N .
N,
. , . o
. R
© L
’ .
s
. . .
N\
' \\ ' N
» Y N
\
0 A
\
5 .
i .
= )
t . \ .
* (RS
. 1
v
i
j
]
1‘ -
i
i
. -
~
3
4
-
‘ .
) ~
i <
e R
. .
3 : s, A

ERIC

Aruitoxt provided by Eic:



k. Other I.en&g_

Name o Deacrimion .- Status
‘snobol . 'smoBoLM ‘ revision naeded
’I.isp LISP List Processing . work in prograss

: : Language o :
~logointro - - - . -Introduction- to the ~-4Just-stez'~ted'-~.- e

a8 ' LOGO Lesson. Sequence .

logotest L0GO Teet Instructions ' Just eterted
legoproc - I0GO Proceduree_ : Just eta.rted
logocom ! ' LOGO CGmne.'nda. ~ _work in _pzfogrees

161




:lntrostrct o

o ﬂft.rl'v"'

str2 .

.1- str3
1ister

[ noder

: 3:.'_l:.reotre.v
" catrees

e Bmsry“Searching 2 ‘ o

1. Ini’omation Procsss_iz_xg ) o
Descriﬁion L Statu.s

: Introduction to Sorting R work :I.n progress

Sortins RPN SR revision needed
So* Program J‘udging | i '_ 3 york in progress ) |
: ST worl-:“.ln ms e
: nesrlyl canplete .

| 162' |
'J(\'\a L

‘ -155-




. 'mm‘encal'muma |

3 '.LI.‘P_";E o - Descrimion s ;:_1/:,,35.,,@3;
" intronum .Introduction to the Ntmerica.l 2 'just started
: 0 Anslysis Sequence | ST

Cmatmult - Matrix Multiplicstion - . 'work’in progress
. numqued Numerice.l Integra.tion o S revision needed
11neqi e mm Equations . \,' ,,:_ R m progress
11néq2 ' . Linesr EqQuations I _ _Arevision needed
. rootlab Non-Linear Equations e ":rev:lsion needed j
‘leastsq Leaat Squares '.operat:lona.l :
linprog _ Linear Programning " - T
montecarlo Monte Carlo Methods . .f‘-’..f,-opmt-.ional
splines : _'spux;é,'xppfoxmﬁon_’ L '~'work 1n progress B

ER




ERIC

Aruitoxt provided by Eic:

simula.tion ?__ . Discrete Simlation . -~ workin’ prosress

(csslides " . Computer Uses in Business . . work in progress*‘ -

n. Applications |

mperigten - g

tra.ﬁ.csim Tra.ffic Simlation. f operational ,
racevhrack B S:lmlation Games T operationa.l R
pmn PayrollummA_. -w . ,,“omrat,ioml ...... wm—-ﬁ&*“-h-—

.
°
o NS
.
=S
N - ) -
v - oy
. S
e
. N’.‘.» .
W ‘ §
33 il VO
¥
-
A
3 i
s Y
-
.
PR e -
et -
™
. - e+ e e A et e men s e i o ot ot e
. 4
. : : -
-

iy R TS by VA A e e o e A L i g O 4 ey






°-’ System Pmmﬁ

Descriﬁion —
~Exper1ence with’ D:I.Jkstra Bm-'v‘
phores ‘

nlustra:bion of the Dea.dlock
‘ _.,l.P plem. . -

- ":»i:mperience with I/0 Superviso*"‘:‘"'- e

.‘ fBuffering Routines R

Piiite Btate Machine for
I.exica.l Ana:lys:ls RS

Top-Down Byn'bax Ana.lysis a
' tom-Up Ana.lysis of Expressions
COGe Genera.tion by Templa.tes

~§."\
X,

165

=158«

' operational

- - _operational"

operationa.l '
o aperational g

o opero;tional
'near]y complete

operationsl



e

p. _ Coiiiting Services Office

T_;:  Btatus .
L work 1n progressw

S ; operational [
Remote Terninals < . . - workin Progress

166

-159-

‘”lﬂa.j vork 1n progress L

. "V_DEC-IO BAV Filea R ‘
|+ CalComp Plotter R



q. Logical Dasigg

i

Name - Description Status
intrologic Introduction to the Logical operational
: _ Design Sequence :

logicarith Introduction to Digital . operational
Arithmetic

logicgate Conbinational Building ’ - operational
Blocks

logicmin Minimization of Boolean operational
Expressions

logictf Basic Sequential Building nearly complete.

_ Blocks--Flip ‘Flops ‘

logicseq Sequentiel Circuit Design ~ work in progreas

logicedr Combinatorial Problems operational

logicmsi MSI Logical Building Blocks - operational

logichdw Semiconductor Fabrication Methods operational

logicflow Data Flow Diagrams operational

logiclab Logic Laboratory Just started

boolex Boolean Expressions work in progress

logiccomb Combinations of Logic Circuits Just started .

167 “

«160~




o Neme o
reﬁunm . .-...,.,...

~cu§sed1t
wits

pllcomp
pllcomp?

fortcomp
foz’tcm

basiccomp
cobolcomp

pascalcomp
snobolcomp

lispcomp

Descriphion |
Reference ‘Manual.

for tha ‘On-Line cﬂmpilera :

JICRTRAN Compiler

. FORTRAN. 604 BASIC

Compilers
FL/1 COmpiler

PL/1. cOMPiler
- with Line Editor

IORTRAN campiler

FORTRAN Compiler with

Iine Editor
BASIC Compiler
COBOL Compiler
PASCAL Compiler

SNOBOLA4 and SPITBOL
Compiler

LISP Compiler

168 .

.'1,617,

ftanis :?
' 7°P°rationa1

, ioperutional -
‘ ,:joperational o

A:under revision L
iumder revisionl _f;w;

under revisionf:-i’

under revision

under revision

under revision
under revision

ﬁhdér.r§viaion

under revision

-



'j Neme
cscomments

cstalk

csmsg

csnotes

8. Communication

Descriﬁio’n'
Comments between cS Students -
and Authora '

On~Line COnsultation w:l.th a.n p

_.Instructor -

Bulletin Board for COurse
Messages °

CS Author - Author Commication

169
-162-

Status

‘ qpefafiohal- .

operational

- operatio_x_m:l:

. oparational



~ Name

style

csauthors

csdeéign )
. esmini

cslibrary

cscode
kail -

kaids
khelp

csscrap

csnotes

R )

St 'Lesson Writing ind Evaluaton

'500nwzntions for.cs Authors

‘ w ........ o

Suggestions on Plato Lesson
Writing Style
Ubeful:Mntefial and .Coding

Graphical Lesson Structure Design

Mini Programming System
Prototype

Library of Useful Routines, Char-
sets, Micros, Etc.

Coding Suggestions for CS Lessons

KAIL Lesson Programming Language
Compiler

Description of KAIL Language

Author Aids for KAIL Compiler
a8 Implemented

Lesson Space for Author Practice
CS Author - Author Communication

170

- 'operational

operational
operational

operational

operational

work in progress

nearly complete

opéraxional

operational
operetisnnl



Fs,

m.uocg”mc oxu 1 Repoet No. 2 ' 3. Recipiaxt's Acceasion No. .~
o |sHesT UTUCDCS-R-T76-810 . : —
mmulume Y T Nepar Date

ACSES The. Automated Computer Science Education System A 11 1976 ‘

at the University of Illinois 6.

ﬁ.j;-lm(--)‘ — — & T erloming Organization e
J. Nievergelt; et al. _ o '

“|9- Pérforming Organization Name and Address 10. Proiectﬁ uk/'ork Unit h.lo. g

Department of Computer Science . - . _ |

University of Illinois at Urbana-Chasmpaign. _ atract/Grapt No. JRE.. . ;

Urbana, Illinois 61801 ch1511 and EPP W B R

| , ?1590 -

12, Sponsoring Organization Name and Address. . . M. Type of Report & Penod w :.‘: t#

. v Covered ~ R 2

National Science Foundation e

Washington, D.C. . ;

'-! 15. Supplementary Notes ».
‘\ _ df
* I16. Abstaces . : :
The Automated Computer Science Educational System (AUCES) hes .,

been developed at the University of Illinois for the purpose ot providing :
improved education for the large number of students teking iniroductory
computer science courses. The major components of this sysiem are: .

a litrary of instructional lessons, an interactive progreamming system
with excellent error disgnostics, en information retrieval ~ystem,

an automated exam and quis system, and several leasons wnich judge

student programs. This report briefly describea erch uf these

components, as well as some ideas on programmir; lcnguage design
resnlting from our experience, and presents an e¢veluation of the use

of the system over the past three years.

17, Key Words and Document Analysis. 17a. Descriptors

computer-assistel instruction interactive compilers

CAI infcrmation retrieval

_ computer science education artifinial intelligence
educational ‘innovation programming language design
PLATO

17b. Identifiess/Open-Ended Tesins

17¢. COSATI Field/Group

19. Availalility Statement . . §ecmry Class (This 21, No. of Pages
Report) 166 .
h Security s s 22, Prlce
Pl‘e Lo
Ll"'onu HTI8:98 (10-70) : - USCOMM-DC 40828-P71







